

Development Design Solutions
Unit 19 Greenbox
Westonhall Road
Stoke Prior
Bromsgrove
B60 4AL

Flood Risk Assessment

**Proposed Residential Development at
Barlestoke Road, Newbold Verdon, Leicestershire, LE9 9PZ**

November 2025

Preface

Property Address: Land north of Barlestone Road, Newbold Verdon, Leicestershire. LE9 9PZ

NGR: E: 445100 N: 304000

Existing Development The site comprises an agricultural field, bounded by further greenspace and agricultural land to the north, west and east. Residential development borders the site to the south, with Barlestone Road running along the southern boundary of the site.

Proposed Development Development of 67 new residential dwellings, including an access road, footways and landscaping.

Site Area: Main development site – 2.99ha

DDS Contact Nick Nenadovic

DD: 07834 185943 Email: nick.nenadovic@development-design.co.uk

Project Number: 0528

Version Control: Status: Date:

Rev 2 November 2025

Prepared By:

Nick Nenadovic BEng Hons

Associate Civil Engineer

Checked By:

Cormac O'Connor BEng Hons CEng MICE

Director

This report was prepared for the sole use of the Client and shall not be relied upon or transferred or provided to any other party without the express written authorisation of DDS. It may contain material subject to copyright or obtained subject to licensing; unauthorised copying of this report will be in breach of copyright/licence.

Contents

1. Scope of Instruction and Brief.....	4
2. Site Description.....	5
3. Development Proposals.....	7
4. Flood Risk.....	8
5. Surface Water Drainage Proposals	11
6. Conclusions	18
Appendix A – Illustrative Masterplan.....	19
Appendix B – Topographical Survey.....	20
Appendix C – Severn Trent Water Correspondence	21
Appendix D – Greenfield Runoff Rate Estimation.....	22
Appendix E – Drainage Calculations.....	23
Appendix F – Drainage Strategy.....	24

Version Control

Version Control	
Date and Version	Update
October 2025 - Rev 0	Initial Issue
November 2025 – Rev 1	Report updated to new site layout
November 2025 – Rev 2	Site description updated.

1. Scope of Instruction and Brief

Objectives

1.1 Development Design Solutions (DDS) were commissioned by Wheeldon Brothers 1867 (the Client) to carry out a Flood Risk Assessment (FRA) to support a Outline planning application for the erection of up to 67 dwellings with associated landscaping, open space and drainage infrastructure (all matters reserved except for access). The purpose of the FRA is to demonstrate that this land is suitable for development in terms of flood risk.

Data Sources

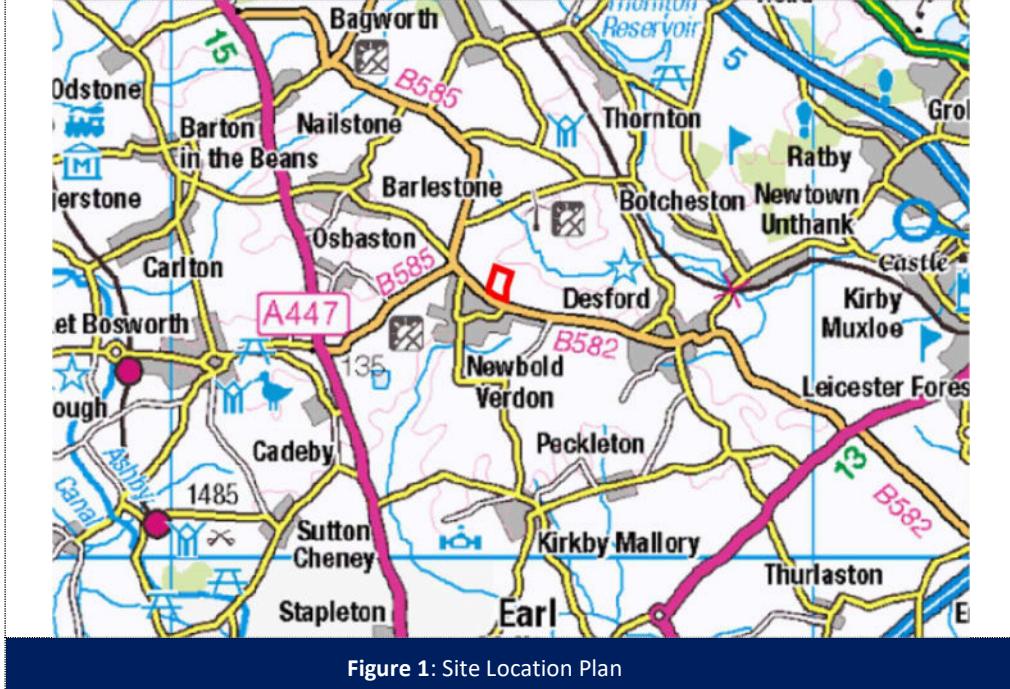
1.2 This report is based upon a detailed review of the following readily available documentation:

- Leicestershire County Council, Preliminary Flood Risk Assessment (PFRA), June 2011;
- Leicestershire County Council, Local Flood Risk Management Strategy, Feb 2024;
- Hinckley & Bosworth Borough Council, Level 1 Strategic Flood Risk Assessment (SFRA), January 2025;
- Environment Agency (EA) online flood maps for planning;
- Severn Trent Water (STW) sewer record plans;
- Severn Trent Water (STW) Developer Enquiry response; and
- Codes for Adoption.

1.3 The findings and opinions conveyed in this report are based on information obtained from a variety of sources as detailed in the report and which DDS assumes to be reliable but have not been independently confirmed. Therefore, DDS cannot and does not guarantee the authenticity or reliability of third-party information it has relied upon.

Report Preparation

1.4 The revised National Planning Policy Framework published in Dec 2024 (NPPF) sets out the Government's planning policies on development in relation to flood risk. The Guidance on Flood Risk and Coastal Change provides advice on how to take account of and address the risks associated with flooding and coastal change in the planning process.


1.5 This FRA has been prepared in accordance with the requirements of the NPPF and the relevant guidance.

2. Site Description

Site Location

2.1 The proposed development site is situated off Barlestone Road, in Newbold Verdon, Leicestershire and comprises an agricultural field, bounded by further greenspace and agricultural land to the north, west and east. Residential development borders the site to the south. The site can be accessed from Barlestone Road which runs along the southern boundary of the site.

2.2 The site's general location is shown in Figure 1 below.

Site Description

2.3 At present, the site comprises an agricultural field. The site is generally a rectangular parcel of land with an approximate area of 2.99 hectares.

2.4 The proposed development site is located on the northern edge of the village of Newbold Verdon and is bounded by agricultural land to the north, east and west. Barlestone Road and residential development borders the south of the site. The wider area is predominantly agricultural fields and rural in character.

Topography

2.5 The topographical survey was carried out by BWB Consulting in July 2025 (drawing reference – 255555). The topographical survey shows that the site generally slopes from north to south. The existing ground level in the north west corner of the site is approximately 133.5mAOD, with levels falling away to approximately 132.0mAOD in the south-east corner of the site adjacent to Barlestone Road.

2.6 A copy of the topographical survey drawing can be found in **Appendix B**.

Geology

2.7 A Ground Investigation had not been undertaken for the development site at the time of writing, however, the Defra online ‘Magic Map’ identified that the site is located within a region of ‘slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils’.

2.8 British Geological Survey (BGS) mapping indicates that the site is underlain by superficial Glaciofluvial deposits, comprising sand and gravel, which in turn are underlain by bedrock strata of the Edwalton Member comprising mudstone.

Hydrology and Hydrogeology

2.9 The Defra online ‘Magic Map’ identified that the site is located within a region designated as a ‘Secondary – B’ Aquifer.

2.10 “Secondary – B Aquifers” are mainly lower permeability layers that may store and yield limited amounts of groundwater through characteristics like thin cracks (called fissures) and openings or eroded layers.

2.11 The nearest surface water feature is the watercourse approximately 150m to the north of the site.

2.12 There are no existing ponds within the site.

Existing Site Drainage

2.13 Sewer records obtained from Severn Trent Water, show that there are no public sewers located within the site boundary. These records show that the residential development to the south is drained by separate foul and surface water sewers.

2.14 A CCTV survey of the existing public sewers was not made available at the time of writing this report.

2.15 The Severn Trent Water sewer records surrounding the site are included in **Appendix C**.

3. Development Proposals

- 3.1 The proposed development comprises 67 new residential houses, with associated roads, footways and landscaping. Highway access will be from a new junction on Barlestone Road.
- 3.2 The proposals include approximately 1.3ha total impermeable area (approximately 45% impermeable). The remainder of the site will be permeable surfacing, predominantly consisting of residential gardens and open landscaped areas with some areas of low-level shrub planting.
- 3.3 An extract of the illustrative masterplan is included in Figure 2 and the drawing is included in **Appendix A**.

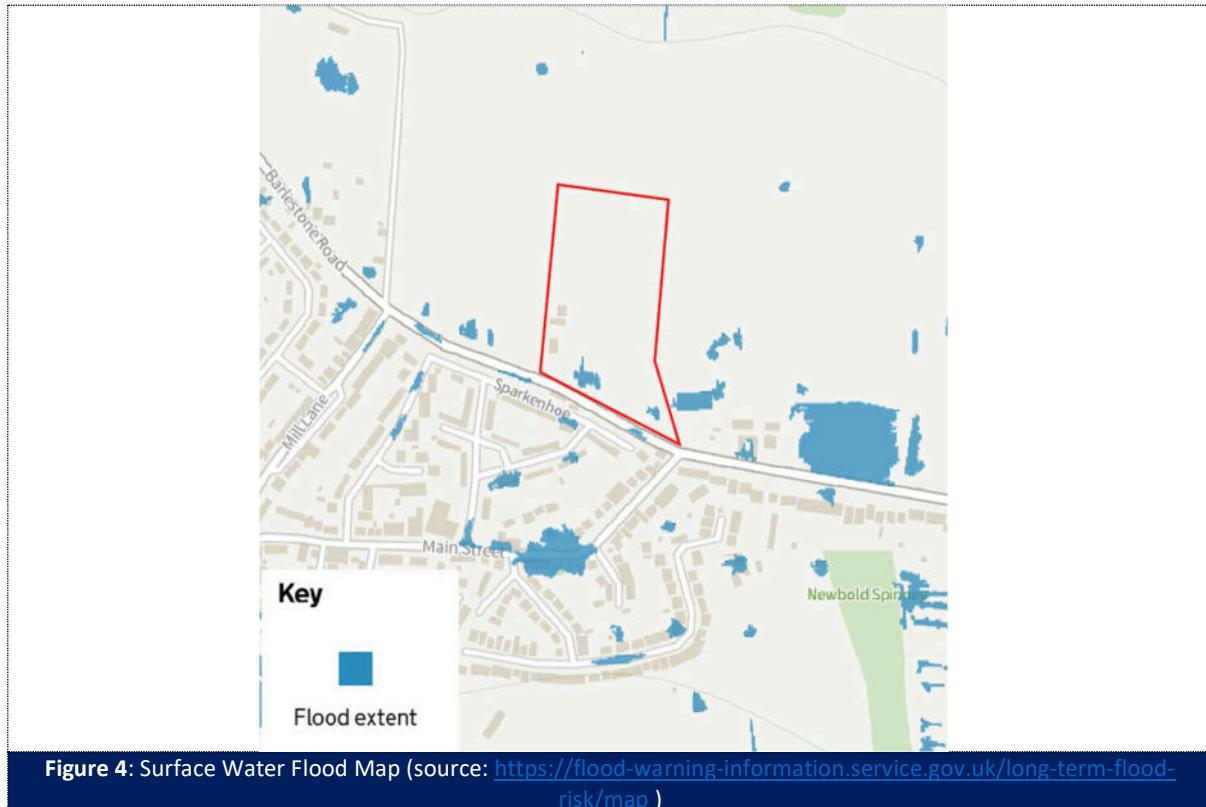

4. Flood Risk

4.1 This section identifies what potential sources of flooding could affect the site and includes further details on how flooding might occur.

Fluvial

4.2 The Environment Agency Statutory Main River Map indicates that the closest Main River to the subject site is Rothley Brook, approximately 2.6 km east of the development site.

4.3 The entirety of site is located within Environment Agency Flood Zone 1 (land having a less than 1 in 1,000 annual probability of river or sea flooding in any year). Refer to Figure 3 for the EA flood map.



4.4 The Leicestershire County Council Preliminary Flood Risk Assessment and the Hinckley & Bosworth Borough Council Strategic Flood Risk Assessment do not have any records of flooding within the development site.

4.5 All development within the site will be located within Flood Zone 1, therefore, the risk of fluvial flooding to the development is 'low'.

Surface Water Flood Risk

4.6 The Government online flood warning information website on surface water flood risk (<https://flood-warning-information.service.gov.uk/long-term-flood-risk/map>) shows that the majority of the site is located within an area of 'low risk' of surface water flooding (see Figure 4).

4.7 According to the surface water flood map, the isolated areas of flood risk identified along the southern boundary is associated with localised low spots. There are no other sources of surface water flooding other than these isolated low spots.

4.8 As per clause 175 of the new NPPF Dec 2024 (see below), this site-specific Flood Risk Assessment demonstrates that due to site levels being raised, no built development including the access, would be located within an area that would be at risk of flooding from any source, now and in the future. Therefore, we consider that the sequential test is not required.

175. The sequential test should be used in areas known to be at risk now or in the future from any form of flooding, except in situations where a site-specific flood risk assessment demonstrates that no built development within the site boundary, including access or escape routes, land raising or other potentially vulnerable elements, would be located on an area that would be at risk of flooding from any source, now and in the future (having regard to potential changes in flood risk).

4.9 Any proposed dwellings adjacent to these existing areas of surface water flood risk, will have finished floor levels set at least 600mm above adjacent existing ground levels. This will ensure that the properties are not at risk from surface water flooding in the future.

4.10 Therefore, the risk of surface water flooding to the development is considered as 'low'.

Groundwater Flood Risk

4.11 Groundwater Investigation had not been undertaken for the development site at the time of writing, however, groundwater monitoring from the adjacent site recorded groundwater depths between 2.00m and 2.60m bgl.

4.12 The Leicestershire County Council SFRA and PFRA identify that the site is not located within areas having risk of groundwater flooding and there is no record of historic groundwater flooding incidents within the site.

4.13 Therefore, the risk of groundwater flooding to the site is considered as 'low'.

Flood Risk from Sewers

4.14 There are no public sewers located within the site. The nearest public surface and foul water sewers are located within the Barlestoke Road to the south of the site.

4.15 Severn Trent Water have not highlighted any issues with sewer flooding in the area of the development, and the SFRA indicates no known historic flooding events.

4.16 The risk of sewer flood water entering the site is 'low'.

Reservoirs and Lakes

4.17 The Environment Agency Reservoir Flood Map shows that the site is not at risk of flooding from reservoirs.

4.18 There are no lakes located within the proximity of the site.

4.19 The risk of flooding from reservoirs and lakes is 'low'.

Artificial Sources

4.20 There are no canals located within the proximity of the site.

4.21 Therefore, the risk of flooding from canals is considered to be 'low'.

5. Surface Water Drainage Proposals

Guidance

5.1 This drainage design will be developed in accordance with the following national standards for guidance:

- CIRIA C753, The SuDS Manual, 2015;
- Environment Agency, Report – SC030219, Rainfall runoff management for developments, 2013;
- Building Regulations 2010, Part H, Drainage and Waste Disposal
- Codes for Adoption.

Basis of Design

5.2 The site has historically been used for agriculture. There is no existing drainage information for the agricultural field. Therefore, overall, the site is considered as greenfield in drainage terms.

5.3 The proposed development will result in a total impermeable area of approximately 1.3ha (approximately 45% impermeable). The remainder of the site will be permeable surfacing, predominantly consisting of residential gardens and landscaped areas with some areas of low-level shrub planting.

5.4 Therefore, the development will increase the rate and volume of surface water run-off compared with its existing condition. Surface water from the proposed impermeable areas needs to be managed so that it does not exacerbate existing or create new flood risk elsewhere during their intended lifetime using SuDS.

Design Criteria

5.5 In line with the National Standards for SuDS guidance, for greenfield developments, the peak run-off rate from the development to any highway drain, sewer, or surface water body for the 1 in 1 year, 1 in 30 year and the 1 in 100 year rainfall event should not exceed the peak greenfield runoff rates for the same events.

5.6 The LCC Highways design guide and National Standards for SuDS considers that any proposed surface water drainage system should consider flood risk to the development in the following flood events:

- The 1 in 30-year event – water should be stored in areas designated to hold and/or convey water;
- The 1 in 100-year event – no surface flooding, all flows are to be fully contained within the sewer network.
- Exceedance flow – events exceeding the 1 in 100-year event – So far as is reasonably practicable, flows are managed in exceedance routes that minimise the risks to people and property.

Discharge Hierarchy

5.7 The proposed surface water drainage system should follow the 'discharge hierarchy' as stated in the Buildings Regulations (Part H). The surface run-off should be disposed of as high up the hierarchy as is reasonably practicable:

- Infiltration and reuse;
- Surface water body;
- Surface water sewer, highway drain, or another drainage system; and
- Combined sewer.

Surface Water Strategy

5.8 Considering the site's geology to be predominantly underlain by Made Ground, Glacial Deposits and Mercia Mudstone, it is considered that the site soil condition is unlikely to be suitable for infiltration techniques as the preferred surface water discharge method.

5.9 Infiltration testing to BRE digest 365 has not been carried out to date on the scheme and comprehensive testing must be carried out to determine whether infiltration is viable to dispose of surface water.

5.10 In the absence of infiltration testing results, it is proposed to discharge all surface water flows from the site to the STW surface water network located within Barlestone Road to the south.

5.11 Flows leaving the site will be restricted to a combined peak discharge rate of 5.75 l/s via a flow control device and attenuation will be provided by a detention basin.

5.12 A connection to an existing Severn Trent Water manhole will require S106 connection agreement with STW.

Estimate of Greenfield Rates

5.13 The greenfield run off rate for the site has been calculated using uksuds.com (by Wallingford) online calculator. Based on the proposed impermeable areas as part of the development, the Qbar rate calculated is **5.75 l/s** and is shown at **Appendix D**. The development should be restricted to this rate for all return periods up to the 100 year plus 40% for climate change.

Surface Water Attenuation

5.14 The proposed drainage strategy has been modelled using Causeway 'Flow' design software. A climate change allowance of 40% for peak rainfall intensity has been used and a 10% allowance of additional impermeable area to allow for the effects of Urban Creep on private areas.

5.15 The 'Flow' model has been run for the recommended return periods with various rainfall duration events to ensure that the proposed drainage system is adequate to safely drain the proposed development site.

5.16 Based on a peak discharge rate of 5.74 l/s, the 'Flow' model shows that, approximately 1,321m³ of attenuation will be required for the 1 in 100 year event plus 40% allowance for climate change.

5.17 The results of the hydraulic calculations are included in **Appendix E**.

Proposed Surface Water Drainage System

5.18 Rainwater that falls on the roofs of the houses will be initially collected in high level rainwater gutters and rain water pipes and discharge to a below ground private drainage network.

5.19 Shared drives and private drives will be drained via gullies and channels and will be connected to a below ground drainage network.

5.20 The main adoptable roads will be drained by a traditional kerb and gully arrangement. The road gullies will be connected to the below ground carrier drain.

5.21 The proposed drainage strategy has been included in **Appendix F**.

Design for Exceedance

5.22 The surface water drainage design will take into consideration the potential for 'exceedance flows' in its formulation. Flood events up to the 100 year plus climate change event will be drained by the proposed drainage system reducing the hazard to people and the risk of property flooding.

5.23 The proposed levels of the buildings and the roads will be carefully designed to contain any overland flow within the highway corridor and routed away from buildings.

Water Quality

5.24 For the sustainable drainage assessment the pollution indices approach for discharge to surface water has been used, as outlined in Chapter 26 of the CIRIA SuDS Manual (C753).

5.25 This approach is used to select suitable SuDS components to ensure water quality of the surface water discharge effluents. Pollution hazards are given indices ranging from 0 (no pollution risk) to 1 (high pollution risk) for three key contaminant types. SuDS components are also given indices relative to the level of treatment they provide against each contaminant type. A drainage network is considered to provide adequate levels of water treatment if the SuDS mitigation indices are greater or equal to the pollution hazard indices for each contaminant type.

5.26 Based on the Table 26.2 CIRIA SuDS Manual (C753), the pollution hazard indices for residential roofs are 'very low' and the access roads and driveways are considered as 'low' (see table below). The levels of pollution risk from residential developments is relatively low, as outlined below. The guidance stipulates that where multiple sources of pollution apply, the land type with the highest pollution index should be considered.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential Roofs	Very Low	0.2	0.2	0.05
Individual property driveways, general access roads	Low	0.5	0.4	0.4

5.27 As described above, Runoff from the development will initially be captured by trapped gullies installed in areas of private and adoptable hardstanding. These will provide pre-treatment prior to runoff reaching the SuDS features downstream, by capturing sediment that can be easily removed during periodic maintenance. SuDS mitigation indices are not given for trapped gullies, and for the purposes of this exercise they will not be considered in the following calculations.

Runoff will then be collected by the attenuation basin, the basin should be constructed using an engineered soil mix and planted with vegetation, to provide a water polishing effect as flows are conveyed through it.

SuDS Component	SuDS Mitigation Indices as per Table 26.3, SuDS Manual C753			
	Total Suspended Solids (TSS)	Metals	Hydrocarbons	
Detention Basin	0.5	0.5	0.6	

5.28 We consider that the detention basin will capture silts, sediments and any accidental spillages. However, it is recommended that trapped road gullies and catch pits at the upstream of the attenuation basin are installed to capture silts, sediments and any accidental spillages.

5.29 The SIA assessment is therefore as follows;

	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Pollution Indices	0.5	0.4	0.4
Mitigation Indices	0.5	0.5	0.6
Outcome	PASS	PASS	PASS

5.30 The Simple Index Approach review confirms that the proposed SuDS components exceed the requirements for pollution control, based on the levels of pollution expected from the development. As such the drainage network is considered fit for purpose from a water quality standpoint.

5.31 It should be noted that the water quality performance of the surface water network is heavily dependent on maintenance; a robust maintenance regime should be put in place to ensure that all SuDS components are regularly inspected, cleaned of sediment and kept in good working order. It is proposed that the detention basin will be offered for adoption to STW under a S104 agreement.

Maintenance

5.32 The new surface water drainage system should be designed to reduce the need for maintenance as far as is reasonably practicable. To facilitate maintenance and repair of drainage features, consideration should be given to the provision of appropriate access routes for maintenance staff, plant and equipment.

5.33 It is recommended that the proposed surface and foul water drainage network/system is adopted and maintained by Severn Trent Water.

5.34 The following maintenance regime should be implemented for all on-site drainage structures/sewers.

- Gutters, rainwater pipes, outlets and gullies should be inspected and thoroughly cleaned once a year;
- All manholes should be inspected once a year and where necessary cleaned out at the same time. Any defects to the brickwork, benching or cover/frame should be made good. Attention should be made to the Confined Spaces Regulations 1997 and the provisions contained therein for access to confined spaces. Details for entering manholes are contained in the above legislation;
- The flow control device should be maintained as per the supplier's recommendations. In addition, this feature should be inspected after prolonged rainfall periods or after any extreme storm events; and

5.35 To maintain optimal performance of the attenuation features and reduce future risk of flooding, it is recommended that a management company is appointed to carry out a regular and robust maintenance regime for the balancing pond and the outfalls. The following maintenance regime should be implemented for these features, monthly or as required;

- Remove litter and debris.
- Cut grass, manage other vegetation and remove nuisance plants.
- Inspect inlets, outlets and overflows for blockages, and clear if required.
- Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies.
- Remove and dispose of oils or petrol residues using safe standard practices.

Health and Safety Requirements

5.36 The new surface water drainage system should be designed with consideration to minimise health and safety risk to the public and to the maintenance staff. The depths of the chambers should be kept to a minimum and the need for man entry should be as minimum as reasonably practicable.

Foul Water Strategy

5.37 The proposed development will be drained by a separate foul water drainage system. Foul water connection pipes from each residential house will discharge to a below ground carrier drain. This carrier drain will discharge into the STW foul manhole 1901 located within Barlestone Road to the south.

5.38 The developer enquiry response from STW confirmed the flows from the site can be accommodated within the existing foul network. And the invert levels provided suggest that a gravity connection from the site will be possible.

Severn Trent Water Requirements

5.39 A Severn Trent Water Developer Enquiry has been applied for and is shown at [Appendix C](#).

5.40 The proposed foul water connections into public sewers will require applications to Severn Trent Water under Section 106 of the Water Industry Act 1991.

6. Conclusions

6.1 Development Design Solutions (DDS) were commissioned by Wheeldon Brothers 1867 (the Client) to carry out a Flood Risk Assessment (FRA) to support an Outline planning application for the erection of up to 67 dwellings with associated landscaping, open space and drainage infrastructure (all matters reserved except for access). The purpose of the FRA is to demonstrate that this land is suitable for development in terms of flood risk.

6.2 The Flood Risk Assessment has been prepared in accordance with the National Planning Policy Framework and local and national policies on SuDS in respect of the proposed scheme of development.

6.3 Following the completion of this assessment, the following conclusions can be drawn:

- The Environment Agency Flood Maps show that the entire site is located within Flood Zone 1 (less than 1 in 1000 annual probability of river flooding in any given year).
- The Environment Agency Surface Water Flood Maps show that there are isolated areas of the site with low to high risk of surface water flooding. These are associated with localised low spots adjacent to the southern boundary. Any dwellings located adjacent to these areas will have finished floor levels set a minimum of 600mm above existing ground levels.
- The risk of flooding to the site from other sources is low.

6.4 Overall it is deemed that with careful design of site levels and surface water drainage the flood risk to the site is low.

6.5 Surface water from the proposed development will be drained by a SuDS scheme with peak discharge limited to greenfield rates and on-site attenuation provided to accommodate flood water within the site for storm events up to 1 in 100 year plus 40% allowance for climate change. The limited peak flow from the development of 5.75l/s will be discharged to the existing STW surface water sewer located to the south of the site within Barlestone Road.

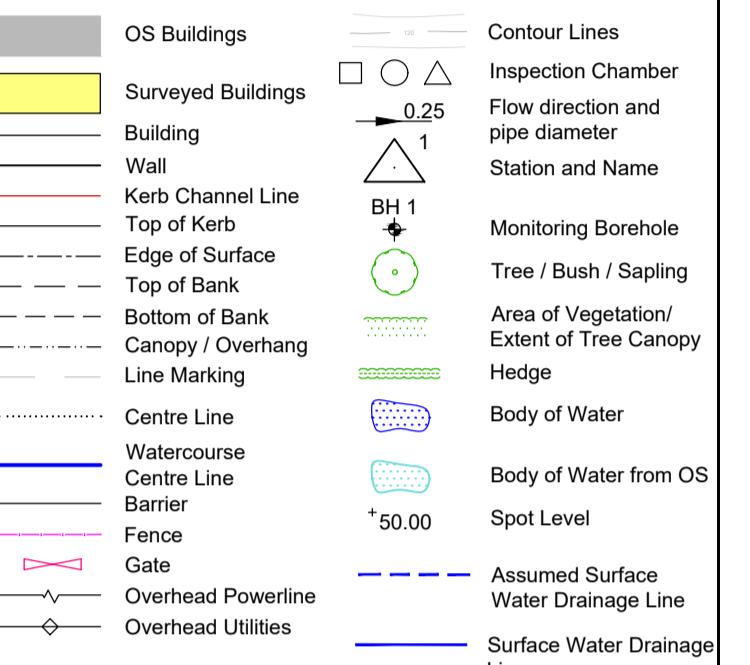
6.6 Foul water from the proposed development will be drained by a separate drainage network that will discharge to the existing STW foul sewer located within Barlestone Road to the south.

6.7 The foul and storm water connections into the public sewers will require a Section 106 application to Severn Trent Water under the Water Industry Act 1991.

6.8 This Flood Risk Assessment report should be submitted to support the planning application.

Appendix A – Illustrative Masterplan

Appendix B – Topographical Survey


Station Coordinates			
Station Name	Eastings (m)	Northings (m)	Height (m)
BWB01	445180.789	303870.927	131.890
BWB02	445287.879	303840.807	131.731
BWB03	444901.499	303990.006	132.439

Notes

- Do not scale this drawing. All dimensions must be checked/verified on site. If in doubt ask.
- This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.
- All dimensions in metres unless noted otherwise. All levels in metres unless noted otherwise.
- Any discrepancies noted on site are to be reported to the engineer immediately.
- No scale factor has been applied to this survey, therefore the os coordinates are to be treated as arbitrary. Please refer to survey station information below for on site control establishment.
- All coordinates and height data relate to OSGB36(15). Control stations are coordinated by means of GPS receiving real time corrections via OS smart net.
- All manhole data is collected from ground level therefore discrepancies may occur. More accurate data is only achievable via confined space entry.
- OS license number: 100022432

Legend

AP Anchor Point
BG Back Gully
BO Bollard
BT British Telecom
BS Bus Stop
C Crest
CL Coffer Level
CMP Cable Marker
CTV Camera TV
DC Drainage Channel
DK Drop Kerb
DP Down Pipe
Elec Electrical
Elec Post
ER Earth Rod
FH Fire Hydrant
FL Floodlight

FBW Fence Barbed Wire
FCL Fence Chain Link
FEE Fence Electric
FMP Fence Metal Panel
FWR Fence Metal Ring
FPP Fence Post & Wind Post
FWM Fence Wire Mesh
FFL Finished Floor Level
FP Flagpole
Gas Gas
GV Gas Valve
GY Gully
H Height
IE Inspection Chamber
IFL Internal Floor Level
IL Invert Level
Litter Bin
LP Lamp Post
M Manhole
Mkr Service Marker
PB Post Box
Post Post
Post Box
P Stop Post
SV Stop Valve
T Call Box
TCB Telephone
THL Threshold Level
TL Traffic Light
TP Telegraph Post
TS Trolley
UTS Unable to Survey
WL Water Level
WM Water Meter
WO Wash Out

P1 03.07.25 First Issue SDS PO
Rev Date Details of Issue / revision Drw Rev

Issues & Revisions

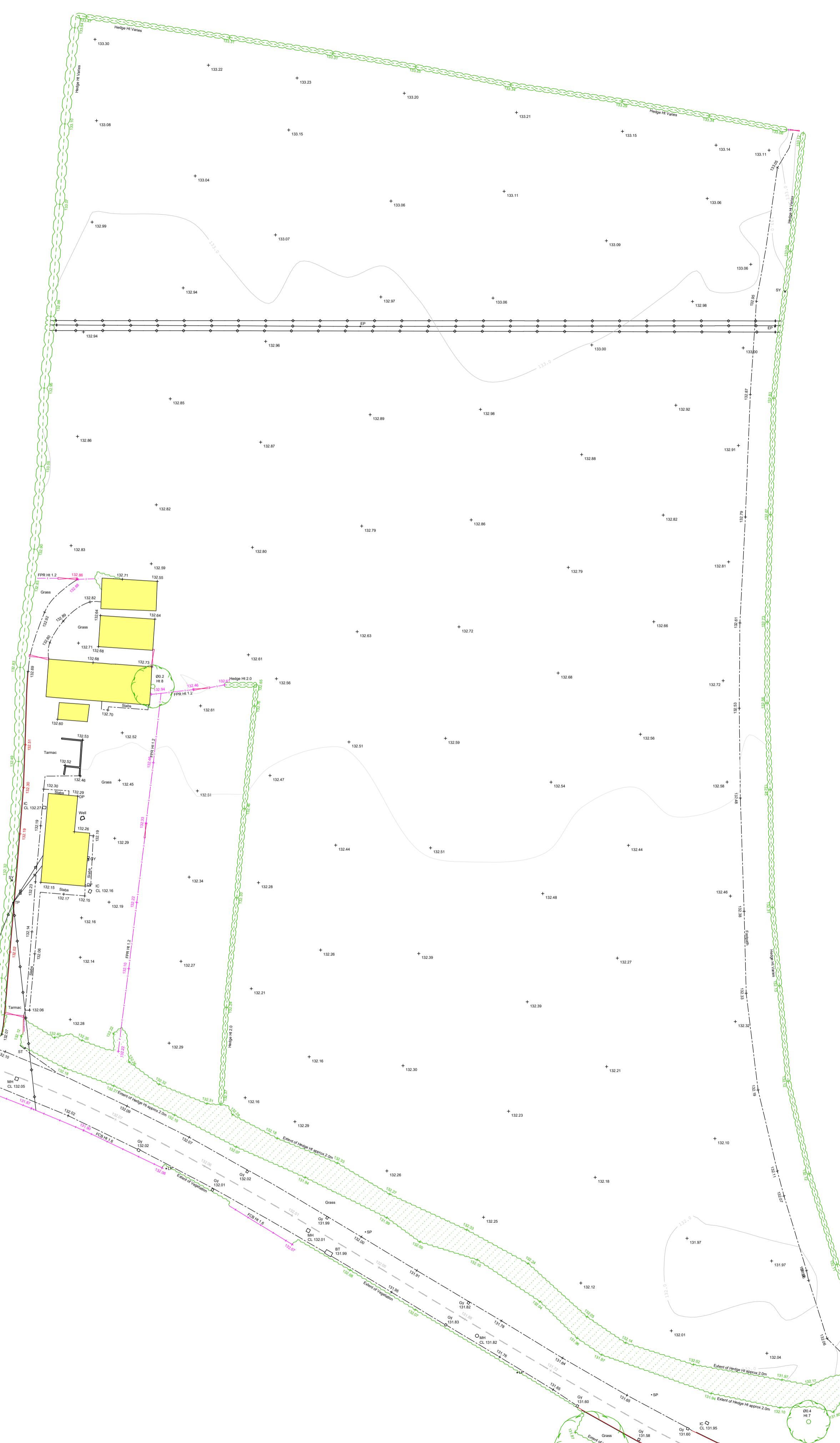
BWB
A CAF GROUP COMPANY

□ Birmingham | 0121 233 3322
□ Leeds | 0113 233 8000
□ London | 020 7407 3879
□ Manchester | 0161 233 4260
■ Nottingham | 0115 924 1100
www.bwbc Consulting.com

Client

Fisher German LLP

Project Title
**North of Barlestone Road,
Newbold Verdon**


Drawing Title
**Existing Site Plan
Sheet 1 of 2**

Drawn: S. D. Shreeves Reviewed: P. Quelch

BWB Ref: 255555 Date: 03.07.25 Scale@A1: 1:500

Drawing Status

INFORMATION
Project - Originator - Zone - Level - Type - Role - Number Status Rev
255555-BWB-00-01-DR-G-001 S2 P1

Notes

- Do not scale this drawing. All dimensions must be checked/verified on site. If in doubt ask.
- This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.
- All dimensions in metres unless noted otherwise. All levels in metres unless noted otherwise.
- Any discrepancies noted on site are to be reported to the engineer immediately.
- No scale factor has been applied to this survey, therefore the os coordinates are to be treated as arbitrary. Please refer to survey station information below for on site control establishment.
- All coordinates and height data relate to OSGB36(15). Control stations are coordinated by means of GPS receiving real time corrections via OS smart net.
- All manhole data is collected from ground level therefore discrepancies may occur. More accurate data is only achievable via confined space entry.
- OS license number: 100022432

Legend

OS Buildings	Contour Lines
Surveyed Buildings	Inspection Chamber
Building	Flow direction and pipe diameter
Wall	Station and Name
Kerb Channel Line	BH 1
Top of Kerb	Monitoring Borehole
Edge of Surface	Tree / Bush / Sapling
Top of Bank	0.25
Bottom of Bank	Area of Vegetation/ Extent of Tree Canopy
Canopy / Overhang	Hedge
Line Marking	Body of Water
Centre Line	Body of Water from OS
Watercourse	*50.00
Centre Line	Spot Level
Barrier	Assumed Surface
Fence	Water Drainage Line
Gate	Surface Water Drainage Line
Overhead Powerline	
Overhead Utilities	

AP	Anchor Point	FBW	Fence Barbed Wire	LB	Litter Bin
BG	Back Gully	FCL	Fence Chain Link	LP	Lamp Post
BO	Bollard	FEE	Fence Electric	MH	Manhole
BS	Bus Stop	FMP	Fence Metal Panel	PB	Post Box
BT	British Telecom	FMR	Fence Metal Mesh	PS	Post
C	Crest	FNB	Fence Netting Board	PE	Post Eye
CL	Corner Level	FPP	Fence Post & Wind	SP	Sign Post
CMP	Cable Marker	FSP	Fence Steel Palisade	ST	Stop Tap
CTV	Security Camera	FWM	Fence Wire Mesh	SV	Stop Valve
CTV	Cable TV	FFL	Finished Floor Level	TBC	Telephone
DC	Drainage	FP	Flagpole	Call Box	
	Channel	Gas		THL	Threshold Level
DK	Drop Kerb	Gas		TL	Traffic Light
DP	Down Pipe	GV	Gas Valve	TP	Telegraph Post
Electric	Electric	GY	Gas	TS	Tree Survey
Electricity Post		H	Height	UTS	Unstable to Survey
ER	Earth Rod	IC	Inspection Chamber	WL	Water Level
FL	Floodlight	IFL	Internal Floor Level	WM	Water Meter
		IL	Invert Level		
		IP	(as a reduced level)		
		LP		WO	Wash Out

P1 03.07.25 First Issue SDS PO
Rev Date Details of Issue / revision Drw Rev

Issues & Revisions

Birmingham | 0121 233 3322
 BWB A CAF GROUP COMPANY Leeds | 0113 233 8000
 London | 020 7407 3879
 Manchester | 0161 233 4260
 Nottingham | 0115 924 1100
www.bwbc Consulting.com

Client

Fisher German LLP

Project Title
North of Barlestone Road, Newbold Verdon

Drawing Title
Existing Site Plan Sheet 2 of 2

Drawn: S. D. Shreeves Reviewed: P. Quelch

BWB Ref: 255555 Date: 03.07.25 Scale@A1: 1:500

Drawing Status

INFORMATION
Project - Originator - Zone - Level - Type - Role - Number Status Rev
255555-BWB-00-02-DR-G-001 S2 P1

Appendix C – Severn Trent Water Correspondence

WONDERFUL ON TAP

SEVERN
TRENT

Severn Trent Water Ltd
Oxley Moor Road
Wolverhampton
WV9 5HN

www.stwater.co.uk
network.solutions@severntrent.co.uk

Nick Nenadovic
Unit 19 Greenbox
Westonhall Road
Stoke Prior
Bromsgrove
B60 4AL

Contact: Michael Taylor
Tel. 07769881839
Reference: 1156393

8th August 2025

Dear Nick

Proposed Development: - 60 Dwelling -Barleston Rd Newbold Verdon

X-445100 Y-304000

I refer to your 'Development Enquiry Request' for the proposed 60 dwelling development in respect of the above-named site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes (SGN) which refer to surface water disposal from development sites.

Public Sewers in Site – Required Protection

Due to a change in legislation on 1 October 2011 there may be former private sewers on the site which have transferred to the responsibility of Severn Trent Water Ltd, which are not shown on the statutory sewer records, but are in your client's land.

Foul Water Drainage

The proposed development would create additional flows of approx. 0.94l/s 2xdwf gravity flows.

The nearest suitable foul sewer is located to the south east of the site connection to m/h m/h 1801 225mm foul sewer .

The network would be suitable with sufficient capacity to receive the additional flows, with no adverse effect on the existing network.

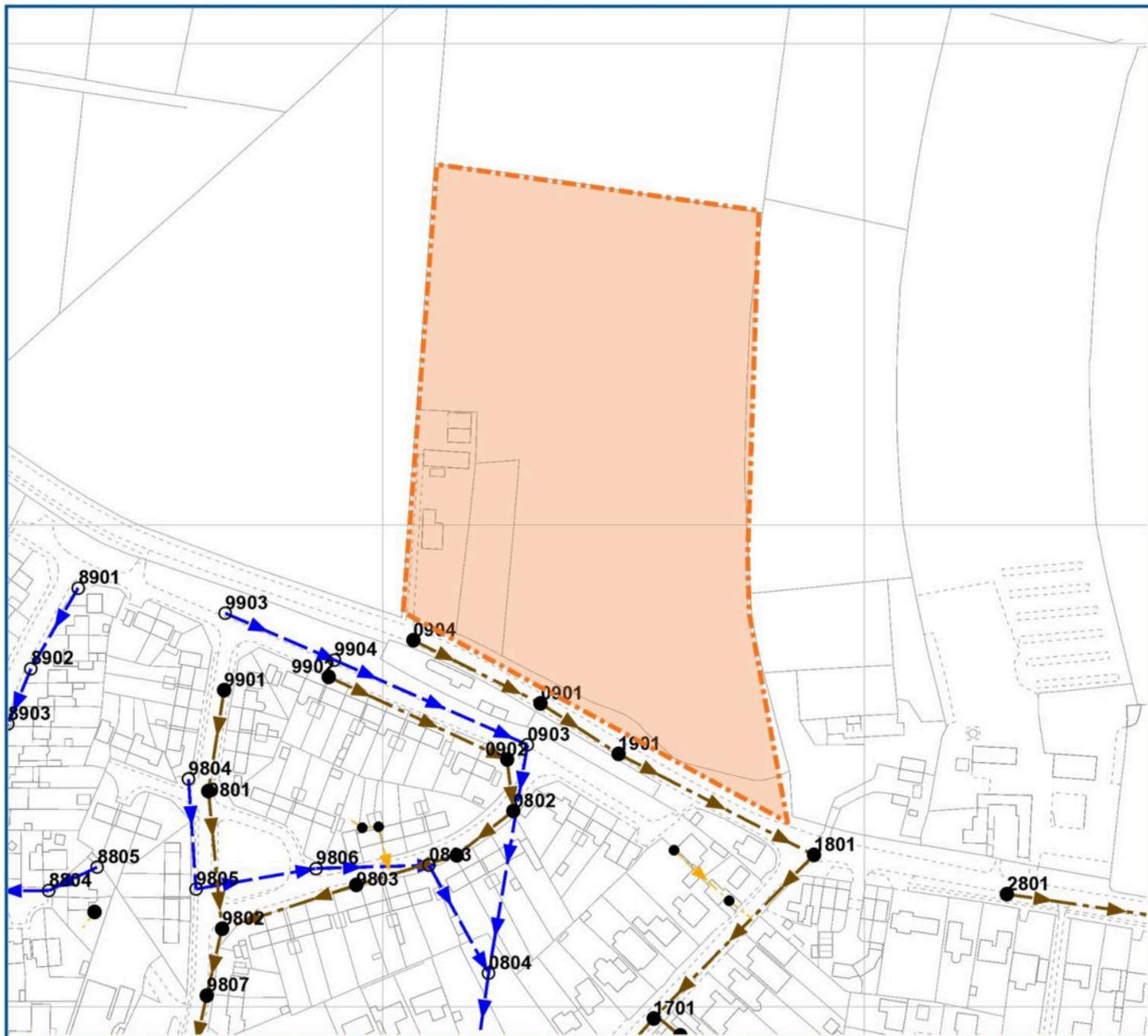
All connections, via new or existing connections are subject to S106 sewer connection applications.

WONDERFUL ON TAP

SEVERN
TRENT

Surface Water Drainage

Under the terms of Section H of the Building Regulations 2000, the disposal of surface water by means of soakaways should be considered as the primary method. If these are found to be unsuitable, satisfactory evidence will need to be submitted. The evidence should be either percolation test results or by the submission of a statement from the SI consultant (extract or a supplementary letter).


Should Soakaways prove to be unfeasible for the development, then a connection to a watercourse /ditch course would be appropriate as the next option. @ 5l/s/ha greenfield rates would be acceptable, with flows to be agreed with the LLFA, If all these options are proven not possible then a connection to the 150mm surface water sewer to the south m/h 0903 would be considered, dependant on required flows and the limited capacity of the sewer in question, it maybe , that modelling maybe required to understand the level of impact the proposals may have on the downstream network.

For any new connections (including the re-use of existing connections) to the public sewerage system, the developer will need to submit a Section 106 application form. Our Developer Services department are responsible for handling all new connections enquiries and applications. To contact them for an application form and associated guidance notes please call 0800 7076600 or download from www.stwater.co.uk.

Please quote reference 1156393 in any future correspondence (including e-mails) with STW Limited. Please note that Developer Enquiry responses are only valid for 6 months from the date of this letter.

Yours sincerely

Michael Taylor
Senior Evaluation Technician
Network Solutions

LEGEND

Operational Site	
Waste Water Pump	
Transferred Asset	
S34	
SD4	
SD2	
Null Private	
Null	
None	
Highway Drain	
Adopted Sewer	
Storage	
Disposal Site	
Off-Line Waste Water Storage	
On-Line Waste Water Storage	
Wet Well	
Waste Water Process Structure	
Sewage Treatment Point	
Sewage Treatment Structure	
Sludge Treatment Point	
Sludge Treatment Structure	
Manhole	
Foul Bifurcation Manhole	
Combined Bifurcation Manhole	
Surface Water Bifurcation Manhole	
Dual Manhole	
Foul Single Manhole	
Combined Single Manhole	
Surface Water Single Manhole	
Twin Manhole	
Combined Adopted Manhole	
Surface Adopted Manhole	
Transferred Manhole	
Unsurveyed Manhole	
Gravity Sewer Pipe	
Foul Gravity Sewer	
Combined Gravity Sewer	
Surface Water Gravity Sewer	
S104 Surface Water Gravity Sewer	
S104 Combined Gravity Sewer	
Foul Gravity Sewer	
Private Surface Water Gravity Sewer	
Private Combined Gravity Sewer	
Private Foul Gravity Sewer	
Surface Water Siphon	
Combined Siphon	
Foul Siphon	
Private Surface Water Siphon	
Private Combined Siphon	
Private Foul Siphon	
Surface Water Siphon	
S104 Combined Siphon	
Foul Siphon	
Disposal Pipe	
Overflow Pipe	
Culverted Water Course	
Waste Internal Site Pipe	
Sewer Service Connection	
Gravity Sewer Others	
Pressure Sewer Pipe	
Foul Water Pressure Sewer	
Combined Pressure Sewer	
Foul Pressure Sewer	
S104 Surface Water Pressure Sewer	
S104 Combined Pressure Sewer	
S104 Foul Pressure Sewer	
Private Surface Water Pressure Sewer	
Private Combined Pressure Sewer	
Private Foul Pressure Sewer	
Surface Water Vacuum Sewer	
Foul Vacuum Sewer	
Combined Vacuum Sewer	
S104 Surface Water Vacuum Sewer	
S104 Combined Vacuum Sewer	
Interceptor	
Screen	
Chamber	
Flushing Chamber	
Solaway	
Overflow	
Fitting	
Blind Shaft	
Facility Connector	
Head Node	
Lamp hole	
Sewerage Air Valve	
Sewerage Chemical Injection Point	
Sewerage Hatch Box	
Sewerage Pressure Washout	
Vent Column	
Waste Water Outfall	
Control Valve	
Hydrobalance	
Penstock	
Sewerage Isolation Valve	
Sewerage Non Return Valve	
Manhole Annotation	
Print200mLine	
Pressure Sewer Annotation	
Gravity Sewer Annotation	
Service Sewer Annotation	
Ancillary	
Balancing Lagoon	
Grease Trap	

Severn Trent Water Limited

Asset Data Management

PO Box 5344

Coventry

CV3 9FT

Telephone: 0345 601 6616

SEWER RECORD

O/S Map Scale: 1:2,500

This map is centred upon:

Date of Issue: 08-08-25

X: 445080.75 Y: 304001.65

Disclaimer Statement:

1 Do not scale off this Map.

2 This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3 On 1 October 2011 most private sewers and private lateral drains in Severn Trent Water's sewerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these sewers or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.

4 Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2024. All rights reserved.

5 Ordnance Survey licence number: AC0000808122

6 Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Sewer Node

Sewer Pipe Data

Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SK44038901	132.3899	130.81	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK45031702	131.0599	129.87	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039609	131.4499	129.42	<UNK>	F	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45031752	<UNK>	0	0	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK45030804	<UNK>	<UNK>	<UNK>	S	<UNK>	<UNK>	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK45031703	<UNK>	<UNK>	<UNK>	F	<UNK>	<UNK>	<UNK>	<UNK>	<UNK>	30/05/2016 00:00:00
SK44039610	131.1999	130.26	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44038802	132.2799	130.73	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK45031750	<UNK>	<UNK>	<UNK>	F	VC	C	<UNK>	<UNK>	<UNK>	30/05/2016 00:00:00
SK45031757	<UNK>	<UNK>	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK44039703	130.7599	129.79	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039801	131.1399	129.85	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK45030701	130.15	128.43	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK44038903	132.32	130.72	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039702	130.58	128.95	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44038701	131.16	129.37	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK45031701	131.2899	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK45031801	131.7299	129.89	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK45030904	132.0399	130.36	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039805	131.0299	129.99	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45030902	131.8	130.45	<UNK>	F	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45030802	131.49	130.33	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039901	131.61	130.06	<UNK>	F	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44039601	131.47	130.51	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45030801	131.3099	130.12	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK45031901	131.7899	129.92	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039701	130.63	129.12	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039807	130.86	129.42	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039704	131	129.23	<UNK>	F	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45030803	131.1699	129.64	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44038902	132.22	130.79	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK45030903	131.85	130.16	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44039804	131.21	130.32	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44039802	131.0299	129.58	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039904	131.85	130.62	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44039603	131.4299	130.36	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45030703	130.1999	129.12	<UNK>	S	CO	C	375	<UNK>	0	31/12/1899 00:00:00
SK44039903	131.88	131.08	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44038805	132.07	131.16	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039803	131.11	129.94	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039902	131.91	130.91	<UNK>	F	VC	C	150	<UNK>	0	31/12/1899 00:00:00

Sewer Node**Sewer Pipe Data**

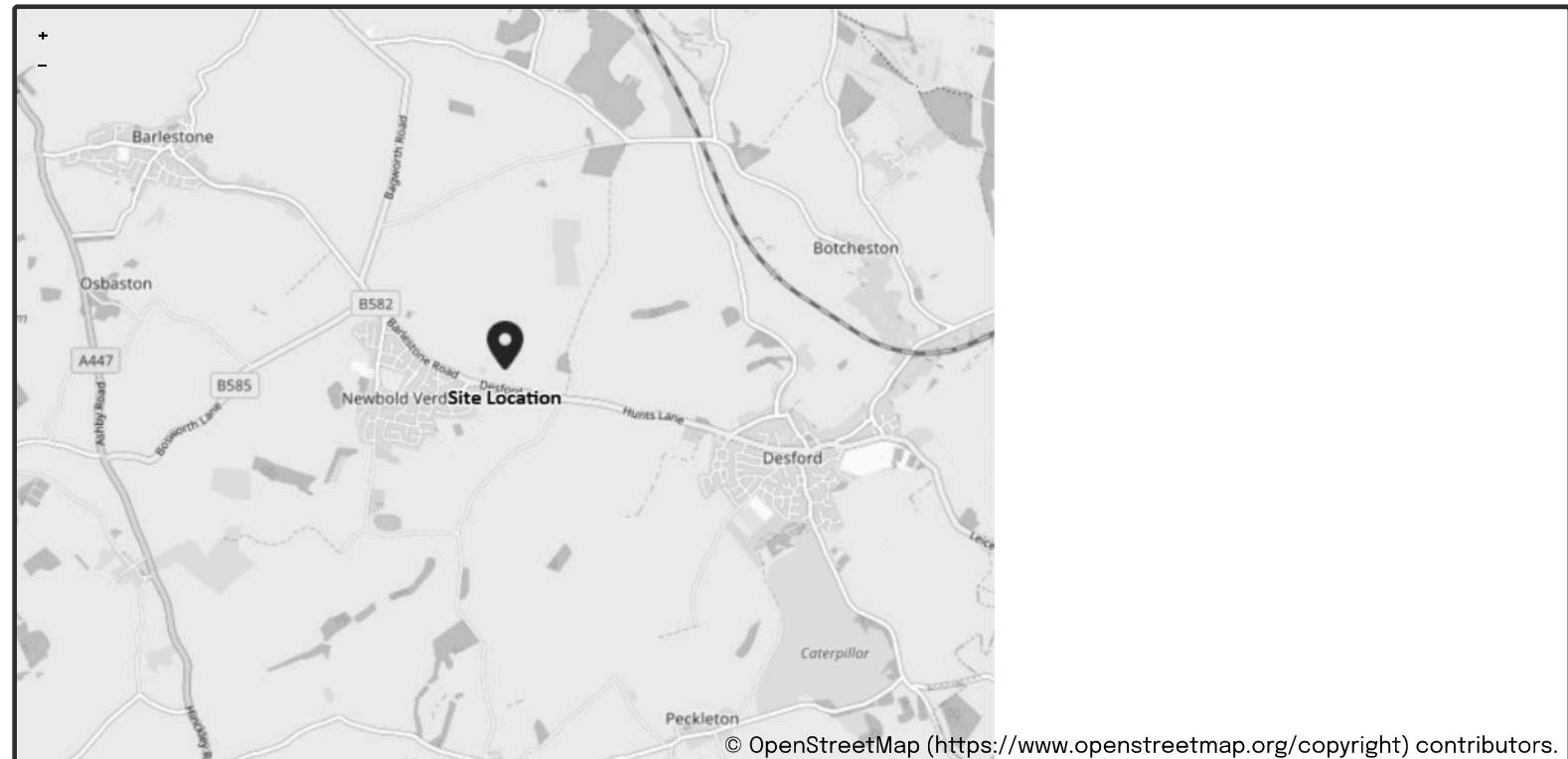
Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SK44039602	131.42	129.62	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK45030702	130.36	128.573	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK44038801	132.2599	130.51	<UNK>	F	VC	C	<UNK>	<UNK>	0	31/12/1899 00:00:00
SK44039806	131.0599	129.71	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK44038804	132.07	130.95	<UNK>	S	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK44039705	130.77	129.88	<UNK>	S	VC	C	150	<UNK>	0	31/12/1899 00:00:00
SK45030901	132	130.07	<UNK>	F	VC	C	225	<UNK>	0	31/12/1899 00:00:00
SK45032801	131.82	130.28	<UNK>	F	CO	C	225	<UNK>	0	31/12/1899 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	20/01/2022 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	20/01/2022 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	17/08/2019 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	31/12/1899 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	31/12/1899 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	20/01/2022 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	20/01/2022 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	13/10/2023 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	02/09/2020 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	10/12/2024 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	14/06/2023 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	13/10/2023 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	17/08/2019 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	31/12/1899 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	27/11/2023 00:00:00
<UNK>	<UNK>	<UNK>	<UNK>	F	VC	<UNK>	<UNK>	<UNK>	<UNK>	31/12/1899 00:00:00

Appendix D – Greenfield Runoff Rate Estimation

Greenfield runoff rate estimation tool

hrwallingford

www.eksuds.com | Greenfield runoff rate estimation tool (<https://www.eksuds.com/>)


This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (CIRIA, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Project details

Date	13/08/2025
Calculated by	
Reference	
Model version	2.1.2

Location

Site name	Barlestone Road
Site location	Newbold Verdon

Site easting (British National Grid)	445455
Site northing (British National Grid)	303794

Site details

Total site area (ha)	1.3	ha
----------------------	-----	----

Greenfield runoff

Method

Method	IH124
--------	-------

IH124

SAAR (mm)	<u>My value</u> 649	<u>Map value</u> mm 649
How should SPR be derived?	WRAP soil type	
WRAP soil type	4	4
SPR	0.47	
QBar (IH124) (l/s)	5.74	l/s

Growth curve factors

Hydrological region	<u>My value</u> 4	<u>Map value</u> 4
1 year growth factor	0.83	
2 year growth factor	0.89	
10 year growth factor	1.49	
30 year growth factor	2	
100 year growth factor	2.57	
200 year growth factor	3.04	

Results

Method

IH124	
4.8	l/s
5.1	l/s
8.6	l/s
11.5	l/s
14.8	l/s
17.5	l/s

Please note runoff estimation is subject to significant uncertainty. Results are therefore normally reported to only 1 decimal place. Where 2 decimal places are provided, this does not indicate accuracy to this level, it has been adopted to prevent 'zero' figures from being reported. Outputs less than 0.01 l/s are reported as 0.01 l/s.

Disclaimer

This report was produced using the Greenfield runoff rate estimation tool (2.1.2) developed by HR Wallingford and available at [uksuds.com](https://www.eksuds.com/) (<https://www.eksuds.com/>). The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at [uksuds.com/terms-conditions](https://www.eksuds.com/terms-conditions) (<https://www.eksuds.com/terms-conditions>). The outputs from this tool have been used to estimate Greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, Centre for Ecology and Hydrology, Wallingford Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

Appendix E – Drainage Calculations

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	1.000
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	50.0		

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S1	0.100	5.00	133.347	1200	445089.754	304126.827	1.572
S2	0.100	5.00	133.140	1200	445083.111	304084.291	1.618
S3	0.100	5.00	133.045	1350	445076.506	304067.546	1.673
S14	0.100	5.00	133.234	1200	445028.253	304061.038	1.547
S4	0.100	5.00	132.990	1500	445075.732	304058.067	1.883
S15	0.100	5.00	133.266	1200	445136.966	304024.959	1.525
S16	0.100	5.00	133.080	1350	445138.232	304048.813	1.555
S17	0.100	5.00	132.901	1350	445091.911	304050.352	1.644
S5	0.100	5.00	132.939	1800	445080.426	304047.137	2.032
S6	0.100	5.00	132.851	1800	445078.268	304006.592	2.025
S7	0.100	5.00	132.783	1800	445076.286	303966.096	2.038
S8	0.100	5.00	132.740	1800	445073.458	303955.725	2.016
S9	0.100	5.00	132.368	1800	445086.719	303946.865	1.758
S10		5.00	132.380	1800	445083.683	303940.175	1.780
S11			132.259	3000	445077.974	303935.248	1.674
S12			132.070	1200	445064.818	303922.323	1.669
S13			131.850	1200	445058.827	303908.444	1.600

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	S1	S2	43.052	0.600	131.775	131.522	0.253	170.0	300	5.60	50.0
1.001	S2	S3	18.000	0.600	131.522	131.447	0.075	240.0	300	5.89	50.0
1.002	S3	S4	9.511	0.600	131.372	131.332	0.040	240.0	375	6.03	50.0
2.000	S14	S4	47.572	0.600	131.687	131.407	0.280	170.0	300	5.66	50.0
1.003	S4	S5	11.895	0.600	131.107	131.057	0.050	240.0	600	6.16	50.0
3.000	S15	S16	23.887	0.600	131.741	131.600	0.141	170.0	300	5.33	50.0
3.001	S16	S17	46.347	0.600	131.525	131.332	0.193	240.0	375	5.99	50.0
3.002	S17	S5	11.926	0.600	131.257	131.207	0.050	240.0	450	6.15	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.203	85.0	18.1	1.272	1.318	0.100	0.0	93	0.961
1.001	1.010	71.4	36.1	1.318	1.298	0.200	0.0	151	1.013
1.002	1.165	128.7	54.2	1.298	1.283	0.300	0.0	170	1.116
2.000	1.203	85.0	18.1	1.247	1.283	0.100	0.0	93	0.961
1.003	1.567	443.1	90.4	1.283	1.282	0.500	0.0	183	1.242
3.000	1.203	85.0	18.1	1.225	1.180	0.100	0.0	93	0.961
3.001	1.165	128.7	36.1	1.180	1.194	0.200	0.0	135	1.004
3.002	1.308	208.0	54.2	1.194	1.282	0.300	0.0	156	1.106

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.004	S5	S6	40.603	0.600	130.907	130.826	0.081	500.0	750	6.70	50.0
1.005	S6	S7	40.545	0.600	130.826	130.745	0.081	500.0	750	7.24	50.0
1.006	S7	S8	10.749	0.600	130.745	130.724	0.021	500.0	750	7.39	50.0
1.007	S8	S9	15.948	0.600	130.724	130.692	0.032	500.0	750	7.60	50.0
1.009	S10	S11	7.541	0.600	130.600	130.585	0.015	500.0	750	5.10	50.0
1.010	S11	S12	18.442	0.600	130.585	130.401	0.184	100.0	150	5.41	50.0
1.011	S12	S13	15.118	0.600	130.401	130.250	0.151	100.0	150	5.66	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.004	1.244	549.7	162.6	1.282	1.275	0.900	0.0	278	1.090
1.005	1.244	549.7	180.7	1.275	1.288	1.000	0.0	295	1.121
1.006	1.244	549.7	198.8	1.288	1.266	1.100	0.0	311	1.148
1.007	1.244	549.7	216.8	1.266	0.926	1.200	0.0	326	1.174
1.009	1.244	549.7	0.0	1.030	0.924	0.000	0.0	0	0.000
1.010	1.005	17.8	0.0	1.524	1.519	0.000	0.0	0	0.000
1.011	1.005	17.8	0.0	1.519	1.450	0.000	0.0	0	0.000

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	43.052	170.0	300	Circular	133.347	131.775	1.272	133.140	131.522	1.318
1.001	18.000	240.0	300	Circular	133.140	131.522	1.318	133.045	131.447	1.298
1.002	9.511	240.0	375	Circular	133.045	131.372	1.298	132.990	131.332	1.283
2.000	47.572	170.0	300	Circular	133.234	131.687	1.247	132.990	131.407	1.283
1.003	11.895	240.0	600	Circular	132.990	131.107	1.283	132.939	131.057	1.282
3.000	23.887	170.0	300	Circular	133.266	131.741	1.225	133.080	131.600	1.180
3.001	46.347	240.0	375	Circular	133.080	131.525	1.180	132.901	131.332	1.194
3.002	11.926	240.0	450	Circular	132.901	131.257	1.194	132.939	131.207	1.282
1.004	40.603	500.0	750	Circular	132.939	130.907	1.282	132.851	130.826	1.275
1.005	40.545	500.0	750	Circular	132.851	130.826	1.275	132.783	130.745	1.288
1.006	10.749	500.0	750	Circular	132.783	130.745	1.288	132.740	130.724	1.266
1.007	15.948	500.0	750	Circular	132.740	130.724	1.266	132.368	130.692	0.926
1.009	7.541	500.0	750	Circular	132.380	130.600	1.030	132.259	130.585	0.924

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
1.000	S1	1200	Manhole	Adoptable	S2	1200	Manhole	Adoptable
1.001	S2	1200	Manhole	Adoptable	S3	1350	Manhole	Adoptable
1.002	S3	1350	Manhole	Adoptable	S4	1500	Manhole	Adoptable
2.000	S14	1200	Manhole	Adoptable	S4	1500	Manhole	Adoptable
1.003	S4	1500	Manhole	Adoptable	S5	1800	Manhole	Adoptable
3.000	S15	1200	Manhole	Adoptable	S16	1350	Manhole	Adoptable
3.001	S16	1350	Manhole	Adoptable	S17	1350	Manhole	Adoptable
3.002	S17	1350	Manhole	Adoptable	S5	1800	Manhole	Adoptable
1.004	S5	1800	Manhole	Adoptable	S6	1800	Manhole	Adoptable
1.005	S6	1800	Manhole	Adoptable	S7	1800	Manhole	Adoptable
1.006	S7	1800	Manhole	Adoptable	S8	1800	Manhole	Adoptable
1.007	S8	1800	Manhole	Adoptable	S9	1800	Manhole	Adoptable
1.009	S10	1800	Manhole	Adoptable	S11	3000	Manhole	Adoptable

Development Design Solutions
Unit 19 Greenbox
Stoke Prior
B60 4AL

File: Network 1.pfd
Network:
Nick Nenadovic
15/10/2025

Page 3
Barlestone Road
Network 1
1 in 2 and 1 in 30 yr +35% cc

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.010	18.442	100.0	150	Circular	132.259	130.585	1.524	132.070	130.401	1.519
1.011	15.118	100.0	150	Circular	132.070	130.401	1.519	131.850	130.250	1.450

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
1.010	S11	3000	Manhole	Adoptable	S12	1200	Manhole	Adoptable
1.011	S12	1200	Manhole	Adoptable	S13	1200	Manhole	Adoptable

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Normal	Additional Storage (m³/ha)	0.0
Summer CV	1.000	Skip Steady State	x	Check Discharge Rate(s)	x
Winter CV	1.000	Drain Down Time (mins)	1440	Check Discharge Volume	x

Storm Durations												
15	30	60	120	180	240	360	480	600	720	960	1440	

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	35	0	0

Node S11 Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	✓	Sump Available	✓
Invert Level (m)	130.585	Product Number	CTL-SHE-0110-5800-1200-5800
Design Depth (m)	1.200	Min Outlet Diameter (m)	0.150
Design Flow (l/s)	5.8	Min Node Diameter (mm)	1200

Node S10 Flow through Pond Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Main Channel Length (m)	10.000
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	130.600	Main Channel Slope (1:X)	1000.0
Safety Factor	2.0	Time to half empty (mins)	1380	Main Channel n	0.030

Inlets S9

Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)
0.000	899.0	0.0	1.600	1574.0	0.0	1.601	0.0	0.0

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)	
15 minute summer	S1	10	131.869	0.094	18.7	0.1061	0.0000	OK
15 minute summer	S2	11	131.683	0.161	37.1	0.1822	0.0000	OK
15 minute summer	S3	11	131.558	0.186	54.3	0.2668	0.0000	OK
15 minute summer	S14	11	131.782	0.095	18.7	0.1079	0.0000	OK
15 minute summer	S4	11	131.306	0.199	90.6	0.3522	0.0000	OK
15 minute summer	S15	10	131.839	0.098	18.7	0.1111	0.0000	OK
15 minute summer	S16	11	131.665	0.139	37.1	0.1996	0.0000	OK
15 minute summer	S17	11	131.426	0.169	54.5	0.2424	0.0000	OK
15 minute summer	S5	11	131.213	0.306	163.5	0.7783	0.0000	OK
15 minute summer	S6	11	131.150	0.324	180.9	0.8241	0.0000	OK
15 minute summer	S7	12	131.093	0.348	192.5	0.8862	0.0000	OK
15 minute summer	S8	12	131.047	0.323	206.7	0.8227	0.0000	OK
360 minute winter	S9	352	130.878	0.268	40.3	0.6831	0.0000	OK
360 minute winter	S10	352	130.878	0.278	23.1	0.7086	0.0000	OK
360 minute winter	S11	352	130.878	0.293	5.9	2.0740	0.0000	SURCHARGED
360 minute winter	S12	352	130.462	0.061	5.8	0.0690	0.0000	OK
360 minute winter	S13	352	130.309	0.059	5.8	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S1	1.000	S2	18.4	0.650	0.216	1.2284	
15 minute summer	S2	1.001	S3	36.5	1.002	0.511	0.6562	
15 minute summer	S3	1.002	S4	54.6	1.069	0.424	0.4856	
15 minute summer	S14	2.000	S4	18.2	0.962	0.214	0.9014	
15 minute summer	S4	1.003	S5	91.0	1.193	0.205	0.9078	
15 minute summer	S15	3.000	S16	18.4	0.950	0.216	0.4631	
15 minute summer	S16	3.001	S17	36.7	1.006	0.285	1.6896	
15 minute summer	S17	3.002	S5	54.7	1.067	0.263	0.6119	
15 minute summer	S5	1.004	S6	163.1	0.948	0.297	7.1178	
15 minute summer	S6	1.005	S7	174.9	0.923	0.318	7.7411	
15 minute summer	S7	1.006	S8	192.0	1.007	0.349	2.0508	
15 minute summer	S8	1.007	S9	208.3	1.269	0.379	2.6196	
360 minute winter	S9	Flow through pond	S10	23.1	0.015	0.000	261.7210	
360 minute winter	S10	1.009	S11	5.9	0.190	0.011	1.1621	
360 minute winter	S11	Hydro-Brake®	S12	5.8				
360 minute winter	S12	1.011	S13	5.8	0.880	0.324	0.0990	342.6

Results for 30 year +35% CC Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)	
15 minute summer	S1	11	132.293	0.518	61.6	0.5854	0.0000	SURCHARGED
15 minute summer	S2	11	132.157	0.635	121.6	0.7179	0.0000	SURCHARGED
15 minute summer	S3	11	131.879	0.507	182.3	0.7261	0.0000	SURCHARGED
15 minute summer	S14	10	131.882	0.195	61.6	0.2201	0.0000	OK
15 minute summer	S4	11	131.740	0.633	305.9	1.1179	0.0000	SURCHARGED
15 minute summer	S15	10	131.949	0.208	61.6	0.2357	0.0000	OK
15 minute summer	S16	11	131.878	0.353	122.6	0.5052	0.0000	OK
15 minute summer	S17	11	131.746	0.489	180.9	0.7001	0.0000	SURCHARGED
15 minute summer	S5	11	131.691	0.784	515.4	1.9952	0.0000	SURCHARGED
15 minute summer	S6	11	131.591	0.765	574.8	1.9457	0.0000	SURCHARGED
15 minute summer	S7	11	131.470	0.725	633.4	1.8462	0.0000	OK
15 minute summer	S8	11	131.375	0.651	690.1	1.6558	0.0000	OK
720 minute winter	S9	720	131.360	0.750	57.0	1.9088	0.0000	OK
720 minute winter	S10	720	131.360	0.760	31.6	1.9344	0.0000	SURCHARGED
720 minute winter	S11	720	131.360	0.775	6.3	5.4791	0.0000	SURCHARGED
360 minute summer	S12	176	130.462	0.061	5.8	0.0692	0.0000	OK
480 minute winter	S13	224	130.309	0.059	5.8	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	S1	1.000	S2	60.0	0.852	0.706	3.0317	
15 minute summer	S2	1.001	S3	120.8	1.715	1.691	1.2675	
15 minute summer	S3	1.002	S4	182.0	1.663	1.414	1.0490	
15 minute summer	S14	2.000	S4	62.3	1.237	0.733	2.7398	
15 minute summer	S4	1.003	S5	294.4	1.252	0.664	3.3506	
15 minute summer	S15	3.000	S16	61.0	1.145	0.717	1.4152	
15 minute summer	S16	3.001	S17	119.4	1.260	0.928	5.0502	
15 minute summer	S17	3.002	S5	170.0	1.341	0.818	1.8896	
15 minute summer	S5	1.004	S6	516.0	1.173	0.939	17.8702	
15 minute summer	S6	1.005	S7	574.6	1.307	1.045	17.7603	
15 minute summer	S7	1.006	S8	631.3	1.493	1.148	4.5235	
15 minute summer	S8	1.007	S9	685.1	1.869	1.246	5.7969	
720 minute winter	S9	Flow through pond	S10	31.6	0.006	0.000	798.9999	
720 minute winter	S10	1.009	S11	6.3	0.269	0.011	3.3190	
720 minute winter	S11	Hydro-Brake®	S12	5.8				
360 minute summer	S12	1.011	S13	5.8	0.881	0.327	0.0995	560.2

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	1.000
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	✓
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	✓
Maximum Rainfall (mm/hr)	50.0		

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S1	0.100	5.00	133.347	1200	445089.754	304126.827	1.572
S2	0.100	5.00	133.140	1200	445083.111	304084.291	1.618
S3	0.100	5.00	133.045	1350	445076.506	304067.546	1.673
S14	0.100	5.00	133.234	1200	445028.253	304061.038	1.547
S4	0.100	5.00	132.990	1500	445075.732	304058.067	1.883
S15	0.100	5.00	133.266	1200	445136.966	304024.959	1.525
S16	0.100	5.00	133.080	1350	445138.232	304048.813	1.555
S17	0.100	5.00	132.901	1350	445091.911	304050.352	1.644
S5	0.100	5.00	132.939	1800	445080.426	304047.137	2.032
S6	0.100	5.00	132.851	1800	445078.268	304006.592	2.025
S7	0.100	5.00	132.783	1800	445076.286	303966.096	2.038
S8	0.100	5.00	132.740	1800	445073.458	303955.725	2.016
S9	0.100	5.00	132.368	1800	445086.719	303946.865	1.758
S10		5.00	132.380	1800	445083.683	303940.175	1.780
S11			132.259	3000	445077.974	303935.248	1.674
S12			132.070	1200	445064.818	303922.323	1.669
S13			131.850	1200	445058.827	303908.444	1.600

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	S1	S2	43.052	0.600	131.775	131.522	0.253	170.0	300	5.60	50.0
1.001	S2	S3	18.000	0.600	131.522	131.447	0.075	240.0	300	5.89	50.0
1.002	S3	S4	9.511	0.600	131.372	131.332	0.040	240.0	375	6.03	50.0
2.000	S14	S4	47.572	0.600	131.687	131.407	0.280	170.0	300	5.66	50.0
1.003	S4	S5	11.895	0.600	131.107	131.057	0.050	240.0	600	6.16	50.0
3.000	S15	S16	23.887	0.600	131.741	131.600	0.141	170.0	300	5.33	50.0
3.001	S16	S17	46.347	0.600	131.525	131.332	0.193	240.0	375	5.99	50.0
3.002	S17	S5	11.926	0.600	131.257	131.207	0.050	240.0	450	6.15	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.203	85.0	18.1	1.272	1.318	0.100	0.0	93	0.961
1.001	1.010	71.4	36.1	1.318	1.298	0.200	0.0	151	1.013
1.002	1.165	128.7	54.2	1.298	1.283	0.300	0.0	170	1.116
2.000	1.203	85.0	18.1	1.247	1.283	0.100	0.0	93	0.961
1.003	1.567	443.1	90.4	1.283	1.282	0.500	0.0	183	1.242
3.000	1.203	85.0	18.1	1.225	1.180	0.100	0.0	93	0.961
3.001	1.165	128.7	36.1	1.180	1.194	0.200	0.0	135	1.004
3.002	1.308	208.0	54.2	1.194	1.282	0.300	0.0	156	1.106

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.004	S5	S6	40.603	0.600	130.907	130.826	0.081	500.0	750	6.70	50.0
1.005	S6	S7	40.545	0.600	130.826	130.745	0.081	500.0	750	7.24	50.0
1.006	S7	S8	10.749	0.600	130.745	130.724	0.021	500.0	750	7.39	50.0
1.007	S8	S9	15.948	0.600	130.724	130.692	0.032	500.0	750	7.60	50.0
1.009	S10	S11	7.541	0.600	130.600	130.585	0.015	500.0	750	5.10	50.0
1.010	S11	S12	18.442	0.600	130.585	130.401	0.184	100.0	150	5.41	50.0
1.011	S12	S13	15.118	0.600	130.401	130.250	0.151	100.0	150	5.66	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (l/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.004	1.244	549.7	162.6	1.282	1.275	0.900	0.0	278	1.090
1.005	1.244	549.7	180.7	1.275	1.288	1.000	0.0	295	1.121
1.006	1.244	549.7	198.8	1.288	1.266	1.100	0.0	311	1.148
1.007	1.244	549.7	216.8	1.266	0.926	1.200	0.0	326	1.174
1.009	1.244	549.7	0.0	1.030	0.924	0.000	0.0	0	0.000
1.010	1.005	17.8	0.0	1.524	1.519	0.000	0.0	0	0.000
1.011	1.005	17.8	0.0	1.519	1.450	0.000	0.0	0	0.000

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	43.052	170.0	300	Circular	133.347	131.775	1.272	133.140	131.522	1.318
1.001	18.000	240.0	300	Circular	133.140	131.522	1.318	133.045	131.447	1.298
1.002	9.511	240.0	375	Circular	133.045	131.372	1.298	132.990	131.332	1.283
2.000	47.572	170.0	300	Circular	133.234	131.687	1.247	132.990	131.407	1.283
1.003	11.895	240.0	600	Circular	132.990	131.107	1.283	132.939	131.057	1.282
3.000	23.887	170.0	300	Circular	133.266	131.741	1.225	133.080	131.600	1.180
3.001	46.347	240.0	375	Circular	133.080	131.525	1.180	132.901	131.332	1.194
3.002	11.926	240.0	450	Circular	132.901	131.257	1.194	132.939	131.207	1.282
1.004	40.603	500.0	750	Circular	132.939	130.907	1.282	132.851	130.826	1.275
1.005	40.545	500.0	750	Circular	132.851	130.826	1.275	132.783	130.745	1.288
1.006	10.749	500.0	750	Circular	132.783	130.745	1.288	132.740	130.724	1.266
1.007	15.948	500.0	750	Circular	132.740	130.724	1.266	132.368	130.692	0.926
1.009	7.541	500.0	750	Circular	132.380	130.600	1.030	132.259	130.585	0.924

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
1.000	S1	1200	Manhole	Adoptable	S2	1200	Manhole	Adoptable
1.001	S2	1200	Manhole	Adoptable	S3	1350	Manhole	Adoptable
1.002	S3	1350	Manhole	Adoptable	S4	1500	Manhole	Adoptable
2.000	S14	1200	Manhole	Adoptable	S4	1500	Manhole	Adoptable
1.003	S4	1500	Manhole	Adoptable	S5	1800	Manhole	Adoptable
3.000	S15	1200	Manhole	Adoptable	S16	1350	Manhole	Adoptable
3.001	S16	1350	Manhole	Adoptable	S17	1350	Manhole	Adoptable
3.002	S17	1350	Manhole	Adoptable	S5	1800	Manhole	Adoptable
1.004	S5	1800	Manhole	Adoptable	S6	1800	Manhole	Adoptable
1.005	S6	1800	Manhole	Adoptable	S7	1800	Manhole	Adoptable
1.006	S7	1800	Manhole	Adoptable	S8	1800	Manhole	Adoptable
1.007	S8	1800	Manhole	Adoptable	S9	1800	Manhole	Adoptable
1.009	S10	1800	Manhole	Adoptable	S11	3000	Manhole	Adoptable

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.010	18.442	100.0	150	Circular	132.259	130.585	1.524	132.070	130.401	1.519
1.011	15.118	100.0	150	Circular	132.070	130.401	1.519	131.850	130.250	1.450
Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type		
1.010	S11	3000	Manhole	Adoptable	S12	1200	Manhole	Adoptable		
1.011	S12	1200	Manhole	Adoptable	S13	1200	Manhole	Adoptable		

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Normal	Additional Storage (m³/ha)	0.0
Summer CV	1.000	Skip Steady State	x	Check Discharge Rate(s)	x
Winter CV	1.000	Drain Down Time (mins)	1440	Check Discharge Volume	x

Storm Durations												
15	30	60	120	180	240	360	480	600	720	960	1440	

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
100	40	0	0

Node S11 Online Hydro-Brake® Control

Flap Valve	x	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	✓	Sump Available	✓
Invert Level (m)	130.585	Product Number	CTL-SHE-0110-5800-1200-5800
Design Depth (m)	1.200	Min Outlet Diameter (m)	0.150
Design Flow (l/s)	5.8	Min Node Diameter (mm)	1200

Node S10 Flow through Pond Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Main Channel Length (m)	10.000
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	130.600	Main Channel Slope (1:X)	1000.0
Safety Factor	2.0	Time to half empty (mins)		Main Channel n	0.030

Inlets

S9

Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)
0.000	899.0	0.0	1.600	1574.0	0.0	1.601	0.0	0.0

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.70%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(l/s)	Vol (m³)	(m³)	
15 minute summer	S1	11	133.165	1.390	79.8	1.5719	0.0000	FLOOD RISK
15 minute summer	S2	11	132.917	1.395	153.3	1.5782	0.0000	FLOOD RISK
15 minute summer	S3	11	132.433	1.061	230.4	1.5183	0.0000	SURCHARGED
15 minute summer	S14	11	132.459	0.772	79.8	0.8736	0.0000	SURCHARGED
15 minute summer	S4	11	132.191	1.084	385.0	1.9146	0.0000	SURCHARGED
15 minute summer	S15	11	132.708	0.967	79.8	1.0931	0.0000	SURCHARGED
15 minute summer	S16	11	132.556	1.031	154.9	1.4759	0.0000	SURCHARGED
15 minute summer	S17	11	132.223	0.966	231.4	1.3816	0.0000	SURCHARGED
15 minute summer	S5	11	132.106	1.199	694.8	3.0506	0.0000	SURCHARGED
15 minute summer	S6	11	131.917	1.091	772.7	2.7776	0.0000	SURCHARGED
15 minute summer	S7	11	131.685	0.940	850.0	2.3913	0.0000	SURCHARGED
720 minute summer	S8	735	131.565	0.841	100.5	2.1401	0.0000	SURCHARGED
720 minute winter	S9	720	131.565	0.955	72.0	2.4308	0.0000	OK
720 minute winter	S10	705	131.565	0.965	39.0	2.4559	0.0000	SURCHARGED
720 minute winter	S11	720	131.565	0.980	6.3	6.9298	0.0000	SURCHARGED
15 minute summer	S12	14	130.462	0.061	5.8	0.0692	0.0000	OK
15 minute summer	S13	311	130.309	0.059	5.8	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S1	1.000	S2	77.1	1.096	0.907	3.0317	
15 minute summer	S2	1.001	S3	154.2	2.190	2.160	1.2675	
15 minute summer	S3	1.002	S4	231.5	2.099	1.799	1.0490	
15 minute summer	S14	2.000	S4	78.7	1.196	0.925	3.3500	
15 minute summer	S4	1.003	S5	386.2	1.371	0.872	3.3506	
15 minute summer	S15	3.000	S16	77.6	1.145	0.912	1.6821	
15 minute summer	S16	3.001	S17	155.2	1.407	1.206	5.1119	
15 minute summer	S17	3.002	S5	232.4	1.467	1.118	1.8896	
15 minute summer	S5	1.004	S6	696.5	1.583	1.267	17.8702	
15 minute summer	S6	1.005	S7	773.8	1.758	1.408	17.8447	
15 minute summer	S7	1.006	S8	850.6	1.933	1.547	4.7309	
720 minute summer	S8	1.007	S9	99.5	0.737	0.181	7.0190	
720 minute winter	S9	Flow through pond	S10	39.0	0.005	0.000	1057.3208	
720 minute winter	S10	1.009	S11	6.3	0.200	0.011	3.3190	
720 minute winter	S11	Hydro-Brake®	S12	5.8				
15 minute summer	S12	1.011	S13	5.8	0.881	0.327	0.0995	418.5

Appendix F – Drainage Strategy

