

Pell Frischmann

Land West of Ratby

Sustainable Drainage Report

This report is to be regarded as confidential to our Client and is intended for their use only and may not be assigned except in accordance with the contract. Consequently, and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded, except to the extent that the report has been assigned in accordance with the contract. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained.

Report Ref.		109003-PEF-ZZ-XX-RP-CD-000001				
File Path		<u>109003-PEF-ZZ-XX-RP-CD-000001-S2-P04_SDR.docx</u>				
Suit	Rev	Description	Date	Originator	Checker	Approver
S2	P01	Preliminary Issue	29/05/2024	H. McColl	D. Allum-Rooney	D. Allum-Rooney
S2	P02	Updated to Client Comment	04/07/2024	H. McColl	D. Allum-Rooney	D. Allum-Rooney
S2	P03	Updated to new masterplan	05/09/2024	H. McColl	D. Allum-Rooney	D. Allum-Rooney
S2	P04	Updated to LLFA comments	17/01/2025	H. McColl	D. Allum-Rooney	D. Allum-Rooney

Ref. reference. Rev revision. Suit suitability.

Prepared for

Lagan Homes Ltd

Finance House
Beaumont Road
Banbury, Oxfordshire
OX16 1RH

Prepared by

Pell Frischmann

Suite 4.2 – 1 The Poynt
Wollaton Street
Nottingham
NG1 5FW

Pell Frischmann

Contents

1	Introduction.....	4
1.1	Report Context.....	4
1.2	Sources of Information	4
1.3	Site Location.....	4
1.4	Topography	5
1.5	Proposed Development.....	6
2	Existing Conditions	7
2.1	Existing Site	7
2.2	Site Geology	8
2.3	Existing Runoff Rate	8
2.4	Existing Runoff Volume.....	9
3	Surface Water Strategy.....	10
3.1	Drainage Hierarchy	10
3.2	Surface Water Attenuation	10
3.3	Runoff Volume Control.....	11
3.4	SuDS Features	12
3.5	Water Quality	12
3.6	Maintenance and Adoption.....	12
3.7	SuDS Integration Strategy.....	14
4	Foul Water Drainage.....	17
5	Conclusions & Recommendations.....	18

Figures

Figure 1.1 - Site Location Plan	5
Figure 1.2 - LiDAR Elevation Data	6
Figure 2.1 - Local Watercourses	7

Tables

Table 2-1	Greenfield Runoff Rates.....	8
Table 3-1	Plot Areas, Runoff Rates, and Volumes of Attenuation	11
Table 3-2	SuDS Mitigation Indices (from CIRIA SuDS Manual)	12
Table 3-3	Recommended Maintenance Activities for Filter Drains	13
Table 3-4	Recommended Maintenance Activities for Strategic Attenuation Wetlands	14
Table 3-5	Relevant SuDS Features for Exploration and Potential Inclusion at Detailed Design	15
Table 5-1	Summary of Key Information	18

Appendices

- Appendix A Topographic Survey
- Appendix B Development Masterplan
- Appendix C Sewer Records
- Appendix D Greenfield Runoff Rate Calculations
- Appendix E Greenfield Runoff Volume Calculations
- Appendix F Conceptual Drainage Strategy
- Appendix G Attenuation Calculations
- Appendix H Simple Index Approach Summary
- Appendix I Land Ownership Plan

1 Introduction

1.1 Report Context

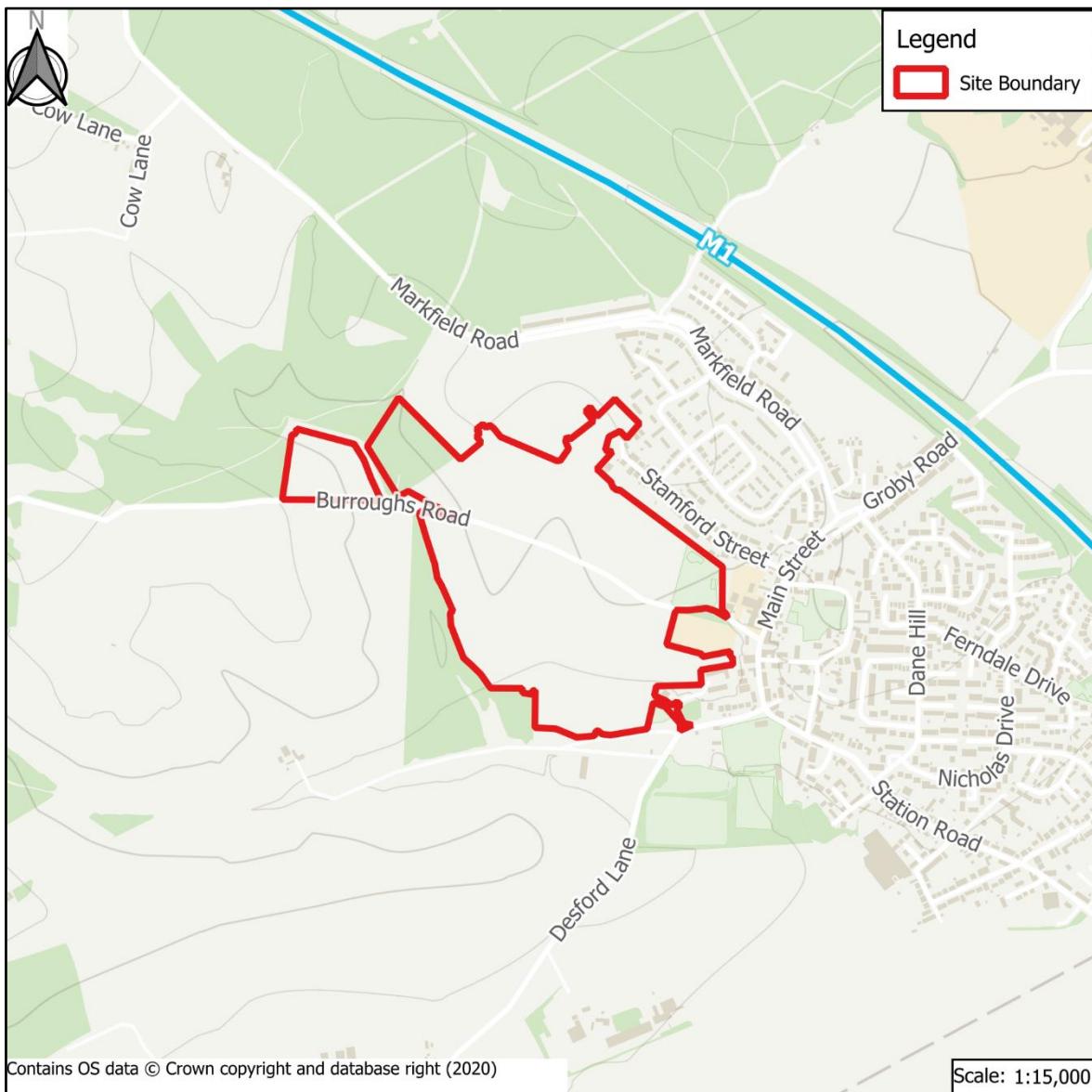
1.1.1 Pell Frischmann has been commissioned by Lagan Homes Ltd. to develop a drainage strategy for a site known as Land West of Ratby to support an Outline planning application for a residential and educational use.

1.1.2 This Sustainable Drainage Report (SDR) will set out the principles of the proposed drainage strategy and demonstrate how the local and national guidance has been considered. This will include justification of; specific surface water discharge rates, the volume of attenuation required and sustainable drainage systems to be included.

1.2 Sources of Information

1.2.1 A review of relevant information and guidance from a range of sources has been undertaken and includes the following key documents;

- National Planning Policy Framework (NPPF), December 2023;
- Non-Statutory Technical Standards for Sustainable Drainage Systems, March 2015;
- Water UK, Sewerage Sector Guidance, October 2019;
- CIRIA, C753 The SuDS Manual Version 6, 2015;
- HM Government, The Buildings Regulations 2010, Drainage and Water Disposal (Part H), 2015;
- Leicestershire County Council, Local Flood Risk Management Strategy for Leicestershire, February 2024.


1.2.2 The NPPF specifies that surface water arising from a developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development. Opportunities to reduce the flood risk to the site itself and elsewhere, taking climate change into account, should be investigated. The drainage proposals within this strategy have been prepared to meet planning policy requirements.

1.2.3 In their role as Lead Local Flood Authority (LLFA), Leicestershire County Council (LCC) have prepared a supplementary planning guidance document titled 'Lead Local Flood Authority Statutory Consultation Checklist'. This SDR has aligned with these requirements to prepare the necessary information.

1.3 Site Location

1.3.1 The site is located to the west of Ratby, Leicestershire.

1.3.2 A site location plan is included for reference as **Figure 1.1**. The application area covers approximately 33ha.

Figure 1.1 - Site Location Plan

- 1.3.3 The site is bound; to the north by land in use for Phases 1 and 2 of the wider development, to the west by open countryside, to the east by Ratby itself and to the south by an unnamed watercourse.
- 1.3.4 Aerial mapping shows that the site is currently in use as agricultural land and forests.
- 1.3.5 The absence of any buildings or significant areas of hardstanding indicate that the site is considered subject to a natural regime of runoff and infiltration, where ground conditions permit.

1.4 Topography

- 1.4.1 The site falls generally from north to south. Elevations range from a high point of approximately 109mAOD adjacent to Phase 2 to the north and falls to levels of approximately 83mAOD adjacent to the brook at the south of the site.
- 1.4.2 Greenhatch topographical survey 43724_T Rev 1 has been included for reference as **Appendix A** to this report.
- 1.4.3 LiDAR data provided by DEFRA, covering the wider area, shown in **Figure 1.2**, shows the elevations in the wider area follow a similar pattern to that on site.

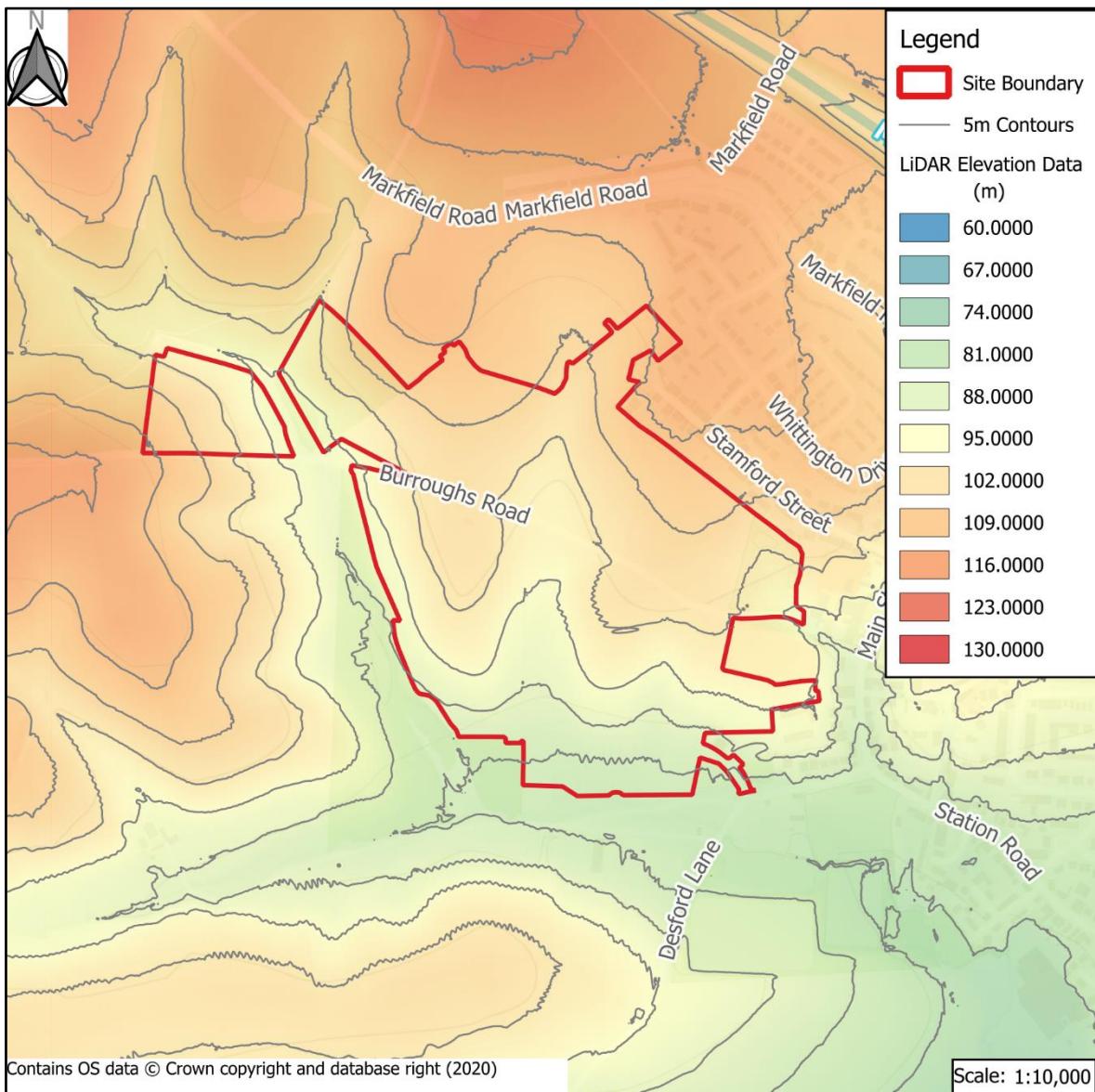


Figure 1.2 - LiDAR Elevation Data

1.5 Proposed Development

1.5.1 Development proposals comprise an Outline planning application (with all matters reserved apart from access) for a phased, mixed-use development comprising about 470 dwellings (Use Class C3) or, in the alternative, about 450 dwellings and care home (Use Class C2). Provision of land for community hub (Use Class F2); provision of land for 1FE primary school (Use Class F1); and associated operations and infrastructure including but not limited to site re-profiling works, sustainable urban drainage system, public open space, landscaping, habitat creation, internal roads/routes, and upgrades to the public highway.

1.5.2 The masterplan for the site on which this drainage strategy has been based can be seen in **Appendix B**.

2 Existing Conditions

2.1 Existing Site

2.1.1 The existing site comprises entirely greenfield areas and therefore is considered to drain entirely via natural means; runoff falling toward watercourses at the low points of the site and infiltrating into the ground where possible.

2.1.2 Sewer records, provided in **Appendix C**, show an extensive surface and foul water sewer network within Ratby itself, conveying water to the south. There are no existing sewers identified within the site however there may be limited assets of land drainage located within the site.

2.1.3 There are several watercourses in the immediate vicinity of the site; an unnamed watercourse running alongside the western boundary of the site, originating from the northwest, an unnamed ditch running south from Burroughs Road conveying runoff generated by the northern half of the site and an unnamed brook flowing west to east along the southern end of the site.

2.1.4 Local watercourses are shown for reference in **Figure 2.1**.

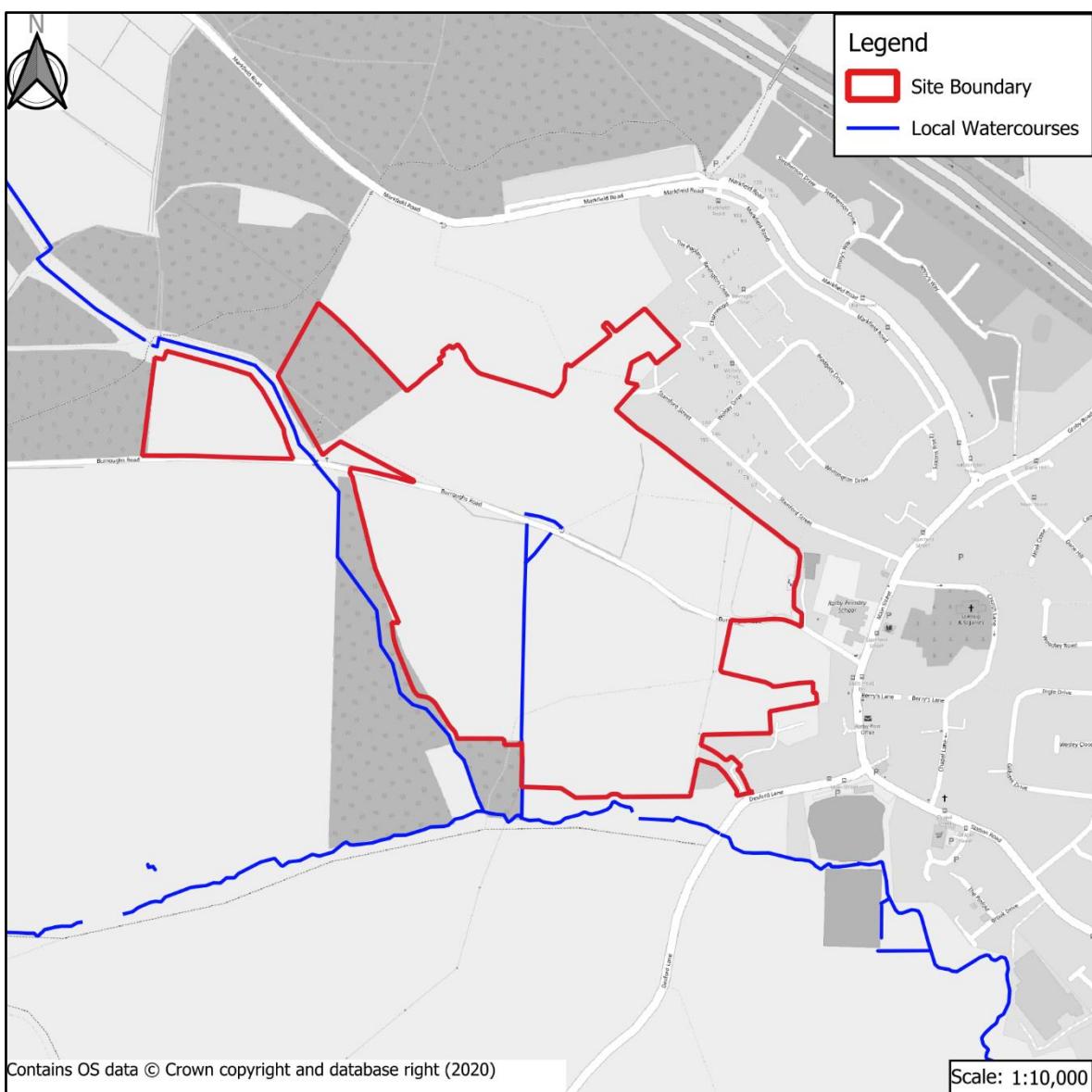


Figure 2.1 - Local Watercourses

2.2 Site Geology

2.2.1 British Geological Survey (BGS) mapping suggests the site is underlain by a mixed superficial geology comprising areas of Thrussington Member in the north and east, with areas of Alluvium found to the south and east following the approximate routes of the unnamed watercourses. The remainder of the site is shown to have no recorded superficial geology.

2.2.2 Mapping shows the site to be underlain by a mixed bedrock geology comprising Gunthorpe Member, Cotgrave Sandstone Member and Edwalton Member.

2.2.3 It is considered that due to the largely clay nature of the bedrock strata, infiltration may not be a feasible means of surface water disposal for the site as a whole. There may however be areas closer to the watercourse in the south where infiltration may be able to be utilised due to the nature of material.

2.2.4 It is considered at this stage that infiltration as a means of surface water disposal is unlikely. Full soakaway testing to BRE365 is required to support further, more detailed drainage designs to satisfy the drainage hierarchy requirements set out in Building Regulations Approved Document H.

2.2.5 It is currently considered that the requirement for infiltration testing should be attached as a condition to any outline planning permission granted, in accordance with the precedent set for Phase 2 of the development (to the north) under outline planning permission reference 22/00648/OUT.

2.2.6 Given the negligible infiltration rates encountered, it is unlikely that infiltration will be a feasible method of outfall for runoff generated by the proposed development.

2.3 Existing Runoff Rate

2.3.1 The overall application site boundary comprises approximately 33ha and is divided into 12 parcels which total an approximate developable area of 14.2ha. This has been taken from the most recent development proposals, available as part of the submission documents accompanying this application with the remainder being used for public open space, landscaping etc.

2.3.2 Within the following outline calculations, the following parameters have been used to assess strategic attenuation.

2.3.3 For residential areas, a 65% impermeability has been assumed and a 10% urban creep factor has been applied.

2.3.4 For areas in use for education, an impermeability of 60% has been assumed.

2.3.5 An assessment of the equivalent greenfield surface water runoff rate from the proposed development areas has been undertaken using HR Wallingford's online greenfield runoff rate estimation tool. This has been carried out using site specific FEH data.

2.3.6 Calculations for the above can be seen in [Appendix D](#).

Table 2-1 Greenfield Runoff Rates

Assessed Area (ha)	Runoff Rate			
	1-year (l/s)	QBAR (l/s)	30-year (l/s)	100-year (l/s)
1	3.56	4.29	8.85	11.02
14.2	50.5	60.9	125.7	156.5

2.4 Existing Runoff Volume

- 2.4.1 An assessment of the existing surface water runoff volume from the entire area (14.2ha) proposed for development has been made for a 1 in 100-year, 6-hour storm.
- 2.4.2 As the existing site is undeveloped, the runoff volume has been calculated using the Source Control module within MicroDrainage to be 3980m³ and the results are included within **Appendix E**.

3 Surface Water Strategy

3.1 Drainage Hierarchy

3.1.1 Prevailing local and national guidance suggests that surface water runoff from a development should be disposed of as high up the following hierarchy as reasonably practicable:

- Water reuse, where a need is identified
- Into the ground (infiltration), where ground conditions permit
- To a surface water body
- To a surface water sewer, highway drain, or another drainage system
- To a combined sewer

3.1.2 The aim of this approach is to manage surface water runoff close to where it falls and mimic natural drainage as closely as possible.

3.1.3 As discussed within **Section 2.2** of this report, it is considered at this stage that, subject to further testing, it is unlikely that infiltration will be a feasible means of wholesale disposal of surface water runoff falling on the site.

3.1.4 Given that discharging surface water generated by areas of hardstanding of the proposed development via infiltration is considered, at this stage, to be unlikely, it is proposed to discharge surface water into the various watercourses adjacent to the site.

3.1.5 It is considered that the drainage hierarchy assessment is satisfied by the above.

3.1.6 The locations and routes of outfall are shown on the drainage strategy drawing presented in **Appendix F**.

3.2 Surface Water Attenuation

3.2.1 The overall site application area is approximately 33ha. This includes development space, public open space and associated road infrastructure. The development plots, including associated internal highways and green spaces comprise approximately 14.2ha. Of this area, the site has been divided into 6 functional catchments. A strategic attenuation wetland has been provided for each catchment with consideration of the SuDS treatment train. It should be noted that these catchments will be highly subject to phasing and order of delivery of parcels within the overall development.

3.2.2 Residential plots have been given an assumed impermeability of 65% which accounts for dwelling footprint, driveways, access etc. and excludes areas given over to garden and communal green spaces. These figures may change during detailed design but represent a conservative approach for the current strategy.

3.2.3 Educational areas within the site have been assigned a 60% impermeability.

3.2.4 The total impermeable area contributing to the drainage system is estimated as 10.64ha. Corresponding catchment variables are included for reference on the drainage strategy drawing included as **Appendix F**.

3.2.5 As a runoff rate restriction is required, it is necessary to provide surface water attenuation to balance the excess volume in a safe manner. Sufficient storage is provided for events up to the 1 in 100-year storm with a 40% allowance for climate change. This allowance accords with the peak runoff factors for the Soar Management Catchment Plan produced by DEFRA.

3.2.6 In order to balance the excess surface water runoff generated by the proposed development in a sustainable way, storage will be provided through vegetated attenuation basins. The breakdown of

impermeable areas for the catchments, along with the corresponding discharge rates and approximate attenuation volumes is provided in **Table 3-1**.

Table 3-1 Plot Areas, Runoff Rates, and Volumes of Attenuation

Catchment	Total Area (ha)	Impermeable Area (ha)	Discharge Rate (l/s)	Peak Volume of Attenuation (m ³) under Critical 100-year Event
A	2.04	1.46	8.8	1318
B	2.90	2.07	12.4	1840
C	2.67	1.91	11.5	1693
D	4.36	2.83	18.7	2492
E	1.93	1.38	8.3	1249
F	1.38	0.99	5.9	837
Total	15.28	10.64	65.6	9429

- 3.2.7 The storage volume required for the catchments have been shown to be provided by numerous strategic attenuation areas across the site. Calculations outlining the above are shown in **Appendix G**.
- 3.2.8 Although ultimately subject to detailed design, the basins will be proposed to have areas of permanent water under normal conditions and will fill up under significant storm events prior to discharge into the receiving watercourse at the catchment greenfield rate.
- 3.2.9 The wetlands provide sufficient storage capacity for all rainfall events up to the 1 in 100-year event, including a 40% increase in rainfall intensity to account for climate change in line with the Environment Agency's latest guidance on such allowances for the Soar Management Catchment. The storage volumes are calculated based on the restrictions outlined in **Table 3-1**.
- 3.2.10 In addition to this primary purpose, the attenuation basins will treat the water by naturally filtering out contaminants, provide a pleasant green landscape when not attenuating runoff and enhance biodiversity through wildflower planting and the associated habitats that it offers. This achieves all 4 pillars of good SuDS design. Despite this, it is considered that a second level of treatment is required, especially for areas in which the spine road is included. This could take the form of conveyance features e.g. swales and filter drains or dedicated areas dedicated as surface level filter strips adjacent to areas of hardstanding.
- 3.2.11 An assessment in line with CIRIA SuDS Manual C753's simple index approach shows that the two suggested stages of treatment (wetland and filter drain) are sufficient to treat the critical pollution hazard proposed within the site (the central spine road). This is summarised in **Appendix H**.
- 3.2.12 The conceptual surface water layout for the development shows the indicative locations of the attenuation basins and SuDS features. This has been included for reference as **Appendix F**.

3.3 Runoff Volume Control

- 3.3.1 The Non-Statutory Technical Standards for Sustainable Drainage Systems S4-S6 states that where reasonably practicable the runoff volume from a development for the 1 in 100-year 6-hour rainfall event should not exceed the runoff volume prior to development or redevelopment. Additionally, if practicable on previously developed sites, the runoff volume should not exceed the equivalent greenfield runoff volume.
- 3.3.2 As the site intends to restrict runoff to the equivalent greenfield QBAR rate for all storm events up to and including the 100-year 6-hour plus climate change event, the volumetric criteria for the Non-Technical Standards for Sustainable Drainage Systems are met, and provision of long-term storage is not required.

3.4 SuDS Features

3.4.1 The proposed strategy is based on sustainable drainage principles, employing SuDS features to manage the surface water runoff across the site. Principally, all surface water will ultimately drain through strategic attenuation features and enter local watercourses in the immediate vicinity of the site.

3.4.2 Whilst the attenuation wetlands are principally designed to address the quantity of water that is to be attenuated, they also have water quality benefits, especially if planted with appropriate vegetation. They can also provide additional habitats for wildlife, increasing biodiversity and can increase the amenity of the immediate area.

3.4.3 A wide variety of other SuDS features should also be implemented across the development as the design progresses and this could include, but is not limited to;

- Water butts
- Swales
- Rainwater harvesting systems
- Rainwater gardens
- Permeable Paving
- Filter drains
- Silt traps
- Sump gullies

3.4.4 It is recommended that the final layout uses the proposed road infrastructure to provide drainage exceedance (overland flood flow) routes through the development and towards the attenuation basins for events in excess of the capacity of the drainage system.

3.5 Water Quality

3.5.1 The Simple Index Approach for assessing pollution prevention outlined in the SuDS Manual has been used to quantify the water quality impacts of the proposed SuDS solution to determine their effectiveness.

3.5.2 The proposed use of the development would be considered a medium pollution hazard level due to the anticipated traffic using the proposed spine road so pollution values have been obtained from the SuDS Manual and compared to the mitigation index values as per **Table 3-2**. A summary of the Simple Index Approach is included for reference **Appendix H**.

Table 3-2 SuDS Mitigation Indices (from CIRIA SuDS Manual)

SuDS Component	Mitigation Indices		
	Total Suspended Solids	Metals	Hydrocarbons
Land Use Pollution Index	0.7	0.6	0.7
Wetland	0.7	0.7	0.5
Filter Drain	0.4	0.4	0.4
SuDS Mitigation Index	0.9	0.9	0.7
Mitigation Requirement Met?	Yes	Yes	Yes

3.5.3 It is therefore considered that when catchments contain areas of the spine road through the site, a strategic wetland provides adequate treatment to runoff when paired with a secondary SuDS feature. Consideration surrounding how this will be delivered will required take place at detailed design stage for the spine road and associated development parcels.

3.6 Maintenance and Adoption

3.6.1 For the proposed surface water drainage system to function correctly, it will need to be appropriately maintained. There are several possibilities for these maintenance responsibilities, they are;

- Severn Trent Water, as the local sewerage undertaker.
- The LLFA or SuDS Approval Body (SAB) (if section 3 of the FWM Act 2010 is enacted)
- A private management company.

3.6.2 Furthermore, there are 3 discrete components to the system – the pipe network, the principal SuDS (strategic attenuation features) and ancillary SuDS (any conveyance or localised attenuation features).

3.6.3 A situation may arise whereby one of the bodies adopts a specific part of the network (the pipe network for example) but not one of the other components. In this case, a combination of adopting bodies may be required and agreements should be put in place to reflect this.

3.6.4 The maintenance schedule for the network must be comprehensive and detail the specific maintenance requirements for each element of the drainage system. The CIRIA SuDS Manual has extensive information relating to the maintenance of SuDS which should be consulted when specifying the requirements.

3.6.5 For pipes, manholes and gullies, both general best practice and specific manufacturer maintenance protocols should be followed. Example maintenance activities and frequencies for the proposed SuDS features are included below.

Table 3-3 Recommended Maintenance Activities for Filter Drains

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	Remove litter (including leaf litter) and debris from filter drain surfaces, access chambers and pre-treatment devices	Monthly (or as required)
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standard water and structural damage	Monthly
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt remove frequencies	Six monthly
	Remove sediment from pre-treatment devices	Six monthly, or as required
Occasional Maintenance	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
	Clear perforated pipework of blockages	As required

Table 3-4 Recommended Maintenance Activities for Strategic Attenuation Wetlands

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	Remove Litter and Debris	Monthly
	Cut grass – for spillways and access routes	Monthly (during growing season), or as required
	Cut grass – meadow grass in and around basin	Half yearly (spring – before nesting season, and autumn)
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies	Monthly (for first year), then annually or required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
Occasional Maintenance	Manage wetland plants in outlets pool – where provided	Annually (as set out in Chapter 23)
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as required
Remedial actions	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

3.7 SuDS Integration Strategy

3.7.1 A robust SuDS strategy has been designed for the site that can be followed by future applicants for reserved matters application as the development of parcels within the overall development come forward. SuDS features are to be an integral part of any future development, and so need to form an important part of any detailed drainage design. The SuDS features need to achieve the four pillars of good SuDS design, by managing both water quantity and quality, whilst providing amenity and biodiversity benefits.

3.7.2 Alongside the strategic drainage features set out as part of the presented drainage strategy, additional SuDS measures could be included, which are currently not shown given the level of detail within the submitted proposals. Subject to the evolution of the detailed design of the proposed development, various measures can be incorporated into individual plots (houses), into the wider street scene and alongside

primary road infrastructure. A list of potential measures deemed appropriate at this stage are presented in **Table 3-5**, and it is recommended that, where possible and appropriate, a variety of these measures are incorporated into the scheme at detailed design. Where it is not possible, full justification must be given as to their exclusion.

Table 3-5 Relevant SuDS Features for Exploration and Potential Inclusion at Detailed Design

SuDS Techniques	Applicable On-Plot	Applicable on Street Level	Applicable for Primary Roads	Comments
Rainwater Harvesting	✓	x	x	Individual properties to have rainwater butts/planter.
Permeable Pavements	✓	✓	✓	Driveways and hard landscaping within plots should be porous paving. Sections of streets could be designed with permeable surfacing and storage subbase.
Bioretention systems	✓	✓	✓	Can be applied throughout the scheme, as part of tree pits or raingardens in driveways, within streets or on primary road network.
Filter Strips	✓	✓	x	Placed on driveways, adjacent to parking areas of alongside smaller streets
Filter Drains	x	✓	✓	Can be used as storage, treatment and conveyance for road runoff.
Trees	x	✓	✓	Can be used within streets to promote natural surface water management.
Swales	x	✓	✓	Where space allows, swales are to be used as a means of storage, treatment and conveyance.
Attenuation Basins	x	x	✓	Additional basins beyond the current strategy could provide intermediate control and treatment of runoff from primary road network.

3.7.3 Given the provisions of the strategic storage within the development to attenuate large volumes of surface water runoff generated by longer events, it is proposed that any additional SuDS measures that are to be included within the proposal should focus on providing short term storage, more intense events to ease capacity issues within the surface water network serving the wider scheme.

3.8 Northern Catchment Connectivity

3.8.1 Subsequent to examination by Leicestershire County Council, as Lead Local Flood Authority, investigation has taken place to assess connectivity of flows between the north and south of Burroughs Road in the vicinity of the outfalls from Catchments A and B.

3.8.2 No positive drainage can be observed crossing under Burroughs Road, and it can be seen that the surface water discharged from development to the North outfalls into the ditch (seen below in **Figure 3.1**) north of Burroughs Road.

Figure 3.1 View eastward of the Ditch on the northern side of Burroughs Road

- 3.8.3 It is proposed that positive connectivity is ensured for catchments north of Burroughs Road by providing a culvert, or similar feature to allow conveyance of this surface water to the south.
- 3.8.4 The above can be seen in **Appendix F**.

4 Foul Water Drainage

- 4.1.1 As the site is currently undeveloped, there is no existing foul network serving the site and there are no identified public sewers within the site boundary. However, there is an extensive network serving Ratby to the east of the site, which may provide points of connection for foul water from the proposed development as per the Severn Trent Water records included as **Appendix C**.
- 4.1.2 For the foul strategy, it is proposed to use foul gravity sewers to convey generated foul water to a low point at the southern end of the site, at which point a pumping station will be used to pump flows to Severn Trent Water's preferred connection point.
- 4.1.3 Consultation with Severn Trent is ongoing with regards to this connection and will likely require upgrade works to the existing network. This is anticipated to take place subsequent to granting of planning permission, obliging STW to provide capacity.
- 4.1.4 All foul connections to the existing public sewerage system will need to be approved by Severn Trent Water in accordance with Section 106 of the Water Industry Act. An application for the connections will need to be submitted to Severn Trent Water in due course to obtain approvals prior to the commencement of works.

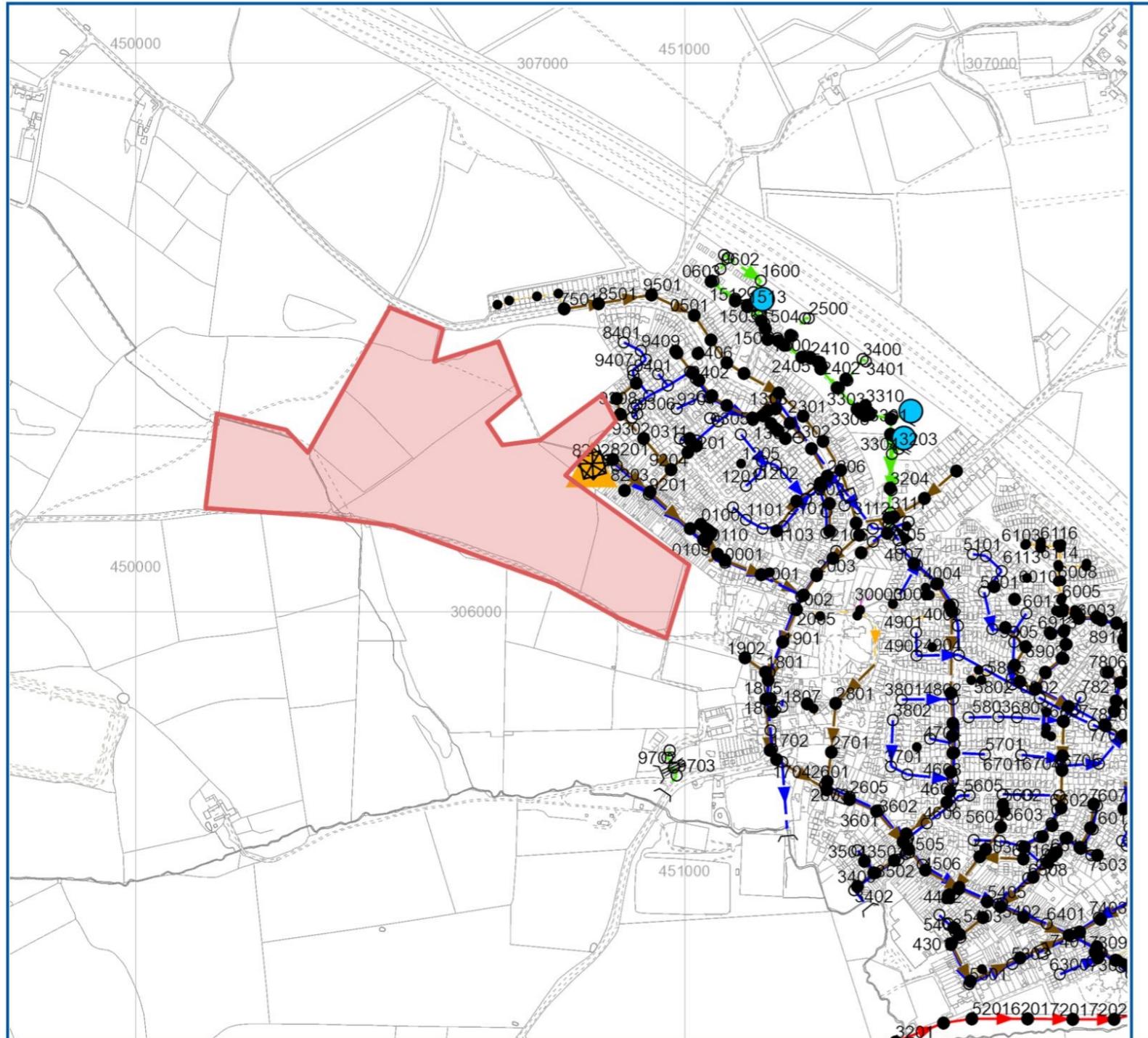
5 Conclusions & Recommendations

5.1.1 This report and supporting appendices demonstrate that an appropriate surface water drainage strategy has been developed for the site based on sustainable drainage principles in line with the relevant local and national policy and standards.

5.1.2 This Sustainable Drainage Report is intended to support an Outline Planning Application and as such the level of detail included is commensurate with the nature of the proposals. **Table 5-1** provides a summary of key information.

Table 5-1 Summary of Key Information

Topic	Existing Site		Proposed Development
Site Area (ha)	33		14.2
Impermeable Area (ha)	0		10.6
Number of Sub-Catchments	-		6
Outfall Location(s)	Local Watercourses		Local Watercourses
Peak Runoff Rate (l/s)	QBAR	60.9	60.9
	1 in 30-year	125.7	
	1 in 100-year	156.5	
Proposed Storage Volume (m ³)	-		
SuDS Features	-		Wetlands Filter Drains Swales Other conveyance features
Maintenance Responsibilities	Landowner		Landowner Operators



Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SK51057810	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057906	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056905	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057905	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057809	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056908	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056813	0	88.193	84.114	F	VC	C	300	<UNK>	16.84	31/12/1899 00:00:00
SK51057812	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057907	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056907	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057901	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057819	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057808	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057903	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056904	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057818	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056810	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056812	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057704	0	<UNK>	<UNK>	F	U	C	150	0	0	06/07/2010 00:00:00
SK51057908	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056909	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057816	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51056911	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057815	0	0	0	F	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057904	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057902	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057821	0	0	0	S	VC	C	150	0	0	10/08/2010 00:00:00
SK51056811	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00
SK51057822	0	0	0	S	<UNK>	<UNK>	0	0	0	31/12/1899 00:00:00

LEGEND

- Surface Water Vacuum Sewer
- Foul Vacuum Sewer
- Combined Vacuum Sewer
- 5104 Surface Water Vacuum Sewer
- 5104 Combined Vacuum Sewer
- 5104 Foul Vacuum Sewer
- Private Surface Water Vacuum Sewer
- Private Combined Vacuum Sewer
- Private Foul Vacuum Sewer
- Surface Water Siphon
- Combined Siphon
- Foul Siphon
- Private Surface Water Siphon
- Private Combined Siphon
- Private Foul Siphon
- 5104 Surface Water Siphon
- 5104 Combined Siphon
- 5104 Foul Siphon
- Surface Water Unsurveyed Pipe
- Combined Unsurveyed Pipe
- Foul Unsurveyed Pipe
- Disposal Pipe
- Service Pipe
- Surface Water Lateral Drain
- Combined Lateral Drain
- Foul Lateral Drain
- 5104 Surface Water Lateral Drain
- 5104 Combined Lateral Drain
- 5104 Foul Lateral Drain
- Private Surface Water Lateral Drain
- Private Combined Lateral Drain
- Private Foul Lateral Drain
- Transferred Surface Water Lateral Drain
- Transferred Combined Lateral Drain
- Transferred Foul Lateral Drain
- Print1000mLine

<u>MATERIALS</u>	
-	- NONE
AC	- ASBESTOS
BR	- BRICK
CC	- CONCRETE
CI	- CAST IRON
CO	- CONCRETE
CSB	- CONCRETE
CSU	- CONCRETE
DI	- DUCTILE IRON
GRP	- GLASS REINFORCED PLASTIC
MAC	- MASONRY
MAR	- MASONRY
PE	- POLYETHYLENE
PF	- PITCH
PP	- POLYPROPYLENE
PSC	- PLASTIC SCAFFOLDING
PVC	- POLYVINYL CHLORIDE
RPM	- REINFORCED PLASTIC
SI	- SPUN (GLASS)
ST	- STEEL
U	- UNKNOWN
VC	- VITRIFIED CLAY
XXX	- OTHER

<u>CATEGORIES</u>	
S CEME	W - WEIR
E BOX CULVERT	C - CASCADE
N	DB - DAMBOARD
E	SE - SIDE ENTR.
E SEGMENTS (BOLTED)	FV - FLAP VALV.
E SEGMENTS (UNBOLTED)	BD - BACK DRO.
RON	S - SIPHON
INFORCED PLASTIC	D - HIGHWAY D.
Y IN REGULAR COURSES	S104 - SECTION
Y RANDOMLY COURSED	
LENE	
PYLENE	
STEEL COMPOSITE	
YL CHLORIDE	
ED PLASTIC MATRIX	
REY) IRON	
<u>SHAPE</u>	
	C - CIRCULAR
	E - EGG SHAPE
	O - OTHER
	R - RECTANGLE
	S - SQUARE
	T - TRAPEZOID
	U - UNKNOWN
<u>PURPOSE</u>	
WN	C - COMBINED
DO CLAY	E - FINAL EFFLU.
	F - FOUL
	L - SLUDGE
	S - SURFACE W.

Severn Trent Water Limited
Asset Data Management
PO Box 5344
Coventry
CV1 2ET

Telephone: 0345 601 6616

O/S Map Scale: 1:10,000

This map is centred upon:

This map is centred upon:

Date of Issue: 27-04-2018

Disclaimer Statement

- 1 Do not scale off this Map.
- 2 This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.
- 3 On 1 October 2011 most private sewers and private lateral drains in Severn Trent Water's sewerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these sewers or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.
- 4 Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2004. All rights reserved.
- 5 Ordnance Survey licence number: **100031673**
- 6 Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

Calculated by:	Henry McColl
Site name:	Ratby Phases 3 & 4
Site location:	Leicestershire

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude:	52.65162° N
Longitude:	1.25372° W
Reference:	203887378
Date:	May 28 2024 09:23

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):	1
-----------------------	---

Methodology

Q_{MED} estimation method:	Calculate from BFI and SAAR
BFI and SPR method:	Specify BFI manually
HOST class:	N/A
BFI / BFIHOST:	0.345
Q_{MED} (l/s):	
Q_{BAR} / Q_{MED} factor:	1.12

Notes

(1) Is $Q_{BAR} < 2.0$ l/s/ha?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is $SPR/SPRHOST \leq 0.3$?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Hydrological characteristics

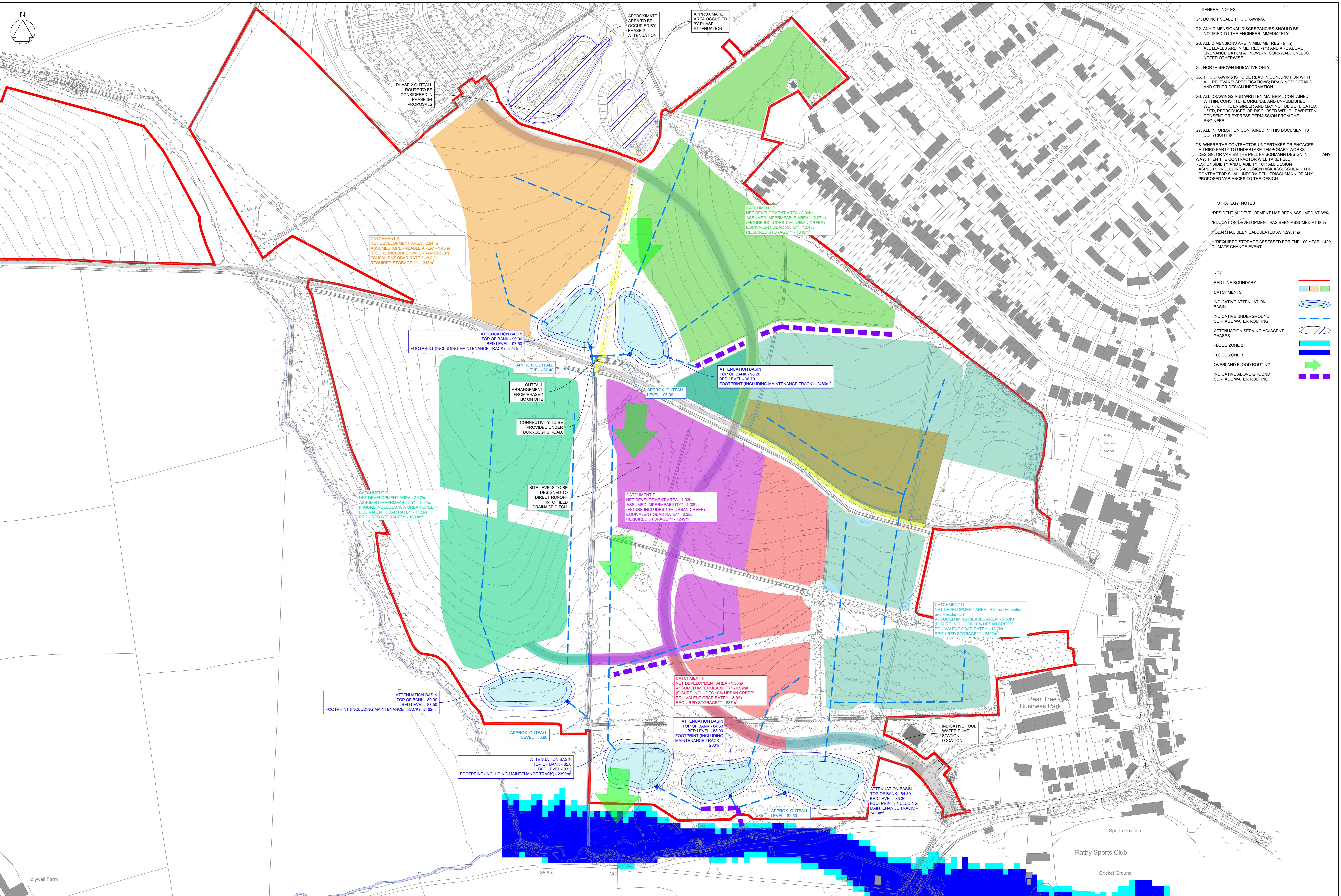
	Default	Edited
SAAR (mm):	665	665
Hydrological region:	4	4
Growth curve factor 1 year:	0.83	0.83
Growth curve factor 30 years:	2	2
Growth curve factor 100 years:	2.57	2.57
Growth curve factor 200 years:	3.04	3.04

Q_{BAR} (l/s):	4.29
1 in 1 year (l/s):	3.56
1 in 30 years (l/s):	8.58
1 in 100 year (l/s):	11.02
1 in 200 years (l/s):	13.04

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.eksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.eksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:10 File 109003 Greenfield Volume.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Greenfield Runoff Volume


FSR Data

Return Period (years)	100
Storm Duration (mins)	360
Region	England and Wales
M5-60 (mm)	20.000
Ratio R	0.400
Areal Reduction Factor	1.00
Area (ha)	14.200
SAAR (mm)	700
CWI	100.320
Urban	0.000
SPR	47.000

Results

Percentage Runoff (%) 44.81
 Greenfield Runoff Volume (m³) 3977.272

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment B.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
15 min Winter	0.528	0.528	12.4	0.0	12.4	703.6		O K
30 min Winter	0.676	0.676	12.4	0.0	12.4	922.6		O K
60 min Winter	0.818	0.818	12.4	0.0	12.4	1143.0		O K
120 min Winter	0.973	0.973	12.4	0.0	12.4	1396.1		O K
180 min Winter	1.065	1.065	12.4	0.0	12.4	1550.2		O K
240 min Winter	1.124	1.124	12.4	0.0	12.4	1652.3		O K
360 min Winter	1.190	1.190	12.4	0.0	12.4	1767.8		O K
480 min Winter	1.219	1.219	12.5	0.0	12.5	1819.0	Flood Risk	
600 min Winter	1.229	1.229	12.5	0.0	12.5	1836.8	Flood Risk	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15 min Winter	138.460	0.0	672.2	0.0	26
30 min Winter	91.070	0.0	870.7	0.0	41
60 min Winter	56.875	0.0	1154.4	0.0	70
120 min Winter	35.332	0.0	1430.4	0.0	128
180 min Winter	26.592	0.0	1607.9	0.0	186
240 min Winter	21.604	0.0	1731.7	0.0	244
360 min Winter	15.907	0.0	1880.0	0.0	360
480 min Winter	12.670	0.0	1939.8	0.0	476
600 min Winter	10.563	0.0	1941.5	0.0	590

Pell Frischmann		Page 2
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment B.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Overflow (l/s)	Σ Outflow (l/s)	Max Volume (m³)	Status
720 min Winter	1.228	1.228	12.5	0.0	12.5	1835.2	Flood Risk
960 min Winter	1.207	1.207	12.4	0.0	12.4	1798.7	Flood Risk
1440 min Winter	1.135	1.135	12.4	0.0	12.4	1671.1	O K
2160 min Winter	1.033	1.033	12.4	0.0	12.4	1495.7	O K
2880 min Winter	0.940	0.940	12.4	0.0	12.4	1340.8	O K
4320 min Winter	0.758	0.758	12.4	0.0	12.4	1048.7	O K
5760 min Winter	0.591	0.591	12.4	0.0	12.4	795.7	O K
7200 min Winter	0.466	0.466	12.4	0.0	12.4	614.3	O K
8640 min Winter	0.370	0.370	12.4	0.0	12.4	480.2	O K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720 min Winter	9.077	0.0	1927.5	0.0	704
960 min Winter	7.106	0.0	1890.9	0.0	926
1440 min Winter	4.989	0.0	1807.5	0.0	1332
2160 min Winter	3.489	0.0	2582.2	0.0	1652
2880 min Winter	2.715	0.0	2676.0	0.0	2112
4320 min Winter	1.930	0.0	2841.3	0.0	2992
5760 min Winter	1.531	0.0	3037.3	0.0	3752
7200 min Winter	1.296	0.0	3211.8	0.0	4472
8640 min Winter	1.141	0.0	3389.8	0.0	5112

Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:11
File Catchment B.SRCX
Innovyze

Page 3

Designed by JNicholson
Checked by

Source Control 2020.1

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
10080 min Winter	0.301	0.301	12.3	0.0	12.3	385.2	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
10080 min Winter	1.032	0.0	3570.5	0.0	5760

Pell Frischmann		Page 4
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment B.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
FEH Rainfall Version	2013	Cv (Winter)	1.000
Site Location GB 450501 306499 SK 50501 06499	Shortest Storm (mins)	15	
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	No	Climate Change %	+40

Time Area Diagram

Total Area (ha) 2.070

Time (mins)	Area	Time (mins)	Area	Time (mins)	Area
From:	To:	From:	To:	From:	To:
0	4 0.690	4	8 0.690	8	12 0.690

Pell Frischmann
 5 Manchester Square
 London
 W1U 3PD
 Date 28/05/2024 12:11
 File Catchment B.SRCX
 Innovuze

Designed by JNicholson
 Checked by

Source Control 2020.1

Page 5

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	1217.0	1.500	1933.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0158-1240-1200-1240	Sump Available	Yes
Design Head (m)	1.200	Diameter (mm)	158
Design Flow (l/s)	12.4	Invert Level (m)	0.000
Flush-Flo™	Calculated	Minimum Outlet Pipe Diameter (mm)	225
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm)	1200
Application	Surface		

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.200	12.4	Kick-Flo®	0.792	10.2
Flush-Flo™	0.360	12.4	Mean Flow over Head Range	-	10.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:11
File Catchment B.SRCX
Innovyze

Page 6

Designed by JNicholson
Checked by

Source Control 2020.1

Hydro-Brake® Optimum Outflow Control

Depth (m)	Flow (l/s)										
0.100	5.7	0.600	11.9	1.600	14.2	2.600	17.9	5.000	24.5	7.500	29.7
0.200	11.7	0.800	10.2	1.800	15.0	3.000	19.2	5.500	25.6	8.000	30.7
0.300	12.3	1.000	11.4	2.000	15.8	3.500	20.6	6.000	26.7	8.500	31.6
0.400	12.4	1.200	12.4	2.200	16.5	4.000	22.0	6.500	27.8	9.000	32.5
0.500	12.2	1.400	13.3	2.400	17.2	4.500	23.3	7.000	28.8	9.500	33.3

Weir Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 1.500

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment C.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
15 min Winter	0.516	0.516	11.5	0.0	11.5	648.4	0 K	
30 min Winter	0.659	0.659	11.5	0.0	11.5	850.2	0 K	
60 min Winter	0.797	0.797	11.5	0.0	11.5	1053.3	0 K	
120 min Winter	0.947	0.947	11.5	0.0	11.5	1286.6	0 K	
180 min Winter	1.035	1.035	11.5	0.0	11.5	1428.7	0 K	
240 min Winter	1.092	1.092	11.5	0.0	11.5	1522.8	0 K	
360 min Winter	1.155	1.155	11.5	0.0	11.5	1629.3	0 K	
480 min Winter	1.183	1.183	11.5	0.0	11.5	1676.4	0 K	
600 min Winter	1.192	1.192	11.5	0.0	11.5	1692.8	0 K	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15 min Winter	138.460	0.0	620.8	0.0	26
30 min Winter	91.070	0.0	804.7	0.0	41
60 min Winter	56.875	0.0	1064.8	0.0	70
120 min Winter	35.332	0.0	1319.5	0.0	128
180 min Winter	26.592	0.0	1483.4	0.0	186
240 min Winter	21.604	0.0	1597.9	0.0	244
360 min Winter	15.907	0.0	1735.5	0.0	360
480 min Winter	12.670	0.0	1791.7	0.0	476
600 min Winter	10.563	0.0	1793.8	0.0	590

Pell Frischmann		Page 2
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12	Designed by JNicholson	
File Catchment C.SRCX	Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Overflow (l/s)	Max Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
720 min Winter	1.191	1.191	11.5	0.0	11.5	1691.4	0	K
960 min Winter	1.172	1.172	11.5	0.0	11.5	1657.7	0	K
1440 min Winter	1.102	1.102	11.5	0.0	11.5	1539.6	0	K
2160 min Winter	1.002	1.002	11.5	0.0	11.5	1375.8	0	K
2880 min Winter	0.912	0.912	11.5	0.0	11.5	1231.1	0	K
4320 min Winter	0.730	0.730	11.5	0.0	11.5	953.3	0	K
5760 min Winter	0.570	0.570	11.5	0.0	11.5	723.4	0	K
7200 min Winter	0.449	0.449	11.5	0.0	11.5	557.3	0	K
8640 min Winter	0.357	0.357	11.5	0.0	11.5	435.4	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720 min Winter	9.077	0.0	1780.6	0.0	704
960 min Winter	7.106	0.0	1746.4	0.0	926
1440 min Winter	4.989	0.0	1669.0	0.0	1334
2160 min Winter	3.489	0.0	2380.7	0.0	1652
2880 min Winter	2.715	0.0	2467.3	0.0	2116
4320 min Winter	1.930	0.0	2621.1	0.0	2988
5760 min Winter	1.531	0.0	2799.8	0.0	3744
7200 min Winter	1.296	0.0	2960.6	0.0	4464
8640 min Winter	1.141	0.0	3124.8	0.0	5112

Pell Frischmann		Page 3
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment C.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
10080 min Winter	0.290	0.290	11.4	0.0	11.4	349.4	O K	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
10080 min Winter	1.032	0.0	3291.5	0.0	5760

Pell Frischmann		Page 4
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment C.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
FEH Rainfall Version	2013	Cv (Winter)	1.000
Site Location GB 450501 306499 SK 50501 06499	Shortest Storm (mins)	15	
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	No	Climate Change %	+40

Time Area Diagram

Total Area (ha) 1.908

Time (mins)	Area	Time (mins)	Area	Time (mins)	Area
From:	To:	From:	To:	From:	To:
0	4 0.636	4	8 0.636	8	12 0.636

Pell Frischmann		Page 5
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment C.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	1139.0	1.500	1890.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0152-1150-1200-1150	Sump Available	Yes
Design Head (m)	1.200	Diameter (mm)	152
Design Flow (l/s)	11.5	Invert Level (m)	0.000
Flush-Flo™	Calculated Minimum Outlet Pipe Diameter (mm)	225	
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm)	1200
Application	Surface		

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.200	11.5	Kick-Flo®	0.787	9.4
Flush-Flo™	0.358	11.5	Mean Flow over Head Range	-	9.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:12
File Catchment C.SRCX
Innovyze

Designed by JNicholson
Checked by

Source Control 2020.1

Page 6

Depth (m)	Flow (l/s)										
0.100	5.5	0.600	11.0	1.600	13.2	2.600	16.6	5.000	22.7	7.500	27.6
0.200	10.9	0.800	9.5	1.800	13.9	3.000	17.8	5.500	23.7	8.000	28.4
0.300	11.4	1.000	10.6	2.000	14.6	3.500	19.1	6.000	24.8	8.500	29.3
0.400	11.5	1.200	11.5	2.200	15.3	4.000	20.4	6.500	25.7	9.000	30.1
0.500	11.3	1.400	12.4	2.400	16.0	4.500	21.6	7.000	26.7	9.500	30.9

Weir Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 1.500

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment D.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level	Max Depth	Max Control	Max Overflow	Max Σ	Max Outflow	Max Volume	Status
	(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Winter	0.475	0.475		18.6	0.0	18.6	960.7	O K
30 min Winter	0.611	0.611		18.6	0.0	18.6	1258.9	O K
60 min Winter	0.743	0.743		18.6	0.0	18.6	1557.7	O K
120 min Winter	0.890	0.890		18.6	0.0	18.6	1903.8	O K
180 min Winter	0.977	0.977		18.6	0.0	18.6	2113.2	O K
240 min Winter	1.033	1.033		18.6	0.0	18.6	2251.1	O K
360 min Winter	1.095	1.095		18.6	0.0	18.6	2405.3	O K
480 min Winter	1.121	1.121		18.6	0.0	18.6	2471.4	O K
600 min Winter	1.129	1.129		18.6	0.0	18.6	2492.1	O K

Storm Event	Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)
		(m³)	(m³)	(m³)	
15 min Winter	138.460	0.0	898.9	0.0	26
30 min Winter	91.070	0.0	1176.1	0.0	41
60 min Winter	56.875	0.0	1566.0	0.0	70
120 min Winter	35.332	0.0	1943.1	0.0	128
180 min Winter	26.592	0.0	2187.5	0.0	186
240 min Winter	21.604	0.0	2361.4	0.0	244
360 min Winter	15.907	0.0	2586.2	0.0	360
480 min Winter	12.670	0.0	2717.8	0.0	476
600 min Winter	10.563	0.0	2794.8	0.0	590

Pell Frischmann		Page 2
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12	Designed by JNicholson	
File Catchment D.SRCX	Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Overflow (l/s)	Max Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
720 min Winter	1.127	1.127	18.6	0.0	18.6	2486.3	0	K
960 min Winter	1.104	1.104	18.6	0.0	18.6	2429.8	0	K
1440 min Winter	1.030	1.030	18.6	0.0	18.6	2244.6	0	K
2160 min Winter	0.929	0.929	18.6	0.0	18.6	1998.0	0	K
2880 min Winter	0.829	0.829	18.6	0.0	18.6	1758.5	0	K
4320 min Winter	0.636	0.636	18.6	0.0	18.6	1315.3	0	K
5760 min Winter	0.488	0.488	18.6	0.0	18.6	989.4	0	K
7200 min Winter	0.379	0.379	18.6	0.0	18.6	756.4	0	K
8640 min Winter	0.301	0.301	18.5	0.0	18.5	594.8	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720 min Winter	9.077	0.0	2832.7	0.0	702
960 min Winter	7.106	0.0	2818.9	0.0	922
1440 min Winter	4.989	0.0	2684.9	0.0	1296
2160 min Winter	3.489	0.0	3520.2	0.0	1640
2880 min Winter	2.715	0.0	3648.7	0.0	2108
4320 min Winter	1.930	0.0	3877.4	0.0	2896
5760 min Winter	1.531	0.0	4146.6	0.0	3632
7200 min Winter	1.296	0.0	4383.8	0.0	4328
8640 min Winter	1.141	0.0	4625.1	0.0	5008

Pell Frischmann
 5 Manchester Square
 London
 W1U 3PD
 Date 28/05/2024 12:12
 File Catchment D.SRCX
 Innovyze

Page 3

Designed by JNicholson
 Checked by

Source Control 2020.1

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
10080 min Winter	0.248	0.248	18.1	0.0	18.1	487.2	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
10080 min Winter	1.032	0.0	4867.9	0.0	5640

Pell Frischmann		Page 4
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment D.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
FEH Rainfall Version	2013	Cv (Winter)	1.000
Site Location GB 450501 306499 SK 50501 06499	Shortest Storm (mins)	15	
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	No	Climate Change %	+40

Time Area Diagram

Total Area (ha) 2.829

Time (mins)	Area	Time (mins)	Area	Time (mins)	Area
From:	To:	From:	To:	From:	To:
0	4 0.943	4	8 0.943	8	12 0.943

Pell Frischmann
 5 Manchester Square
 London
 W1U 3PD
 Date 28/05/2024 12:12
 File Catchment D.SRCX
 Innovye

Designed by JNicholson
 Checked by

Source Control 2020.1

Page 5

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	1897.0	1.500	2762.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0190-1870-1200-1870	Sump Available	Yes
Design Head (m)	1.200	Diameter (mm)	190
Design Flow (l/s)	18.7	Invert Level (m)	0.000
Flush-Flo™	Calculated Minimum Outlet Pipe Diameter (mm)	225	
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm)	1500
Application	Surface		

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.200	18.7	Kick-Flo®	0.823	15.6
Flush-Flo™	0.376	18.6	Mean Flow over Head Range	-	16.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:12
File Catchment D.SRCX
Innovyze

Designed by JNicholson
Checked by

Source Control 2020.1

Page 6

Depth (m)	Flow (l/s)										
0.100	6.6	0.600	18.0	1.600	21.4	2.600	27.0	5.000	37.0	7.500	45.1
0.200	17.5	0.800	16.1	1.800	22.7	3.000	29.0	5.500	38.8	8.000	46.5
0.300	18.5	1.000	17.1	2.000	23.8	3.500	31.2	6.000	40.5	8.500	47.9
0.400	18.6	1.200	18.7	2.200	25.0	4.000	33.3	6.500	42.1	9.000	49.2
0.500	18.4	1.400	20.1	2.400	26.0	4.500	35.2	7.000	43.6	9.500	50.6

Weir Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 1.500

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment E.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15 min Winter	0.363	0.363	8.3	0.0	8.3	469.5	O K
30 min Winter	0.468	0.468	8.3	0.0	8.3	615.3	O K
60 min Winter	0.570	0.570	8.3	0.0	8.3	761.6	O K
120 min Winter	0.685	0.685	8.3	0.0	8.3	931.3	O K
180 min Winter	0.755	0.755	8.3	0.0	8.3	1036.9	O K
240 min Winter	0.801	0.801	8.3	0.0	8.3	1108.4	O K
360 min Winter	0.854	0.854	8.3	0.0	8.3	1190.8	O K
480 min Winter	0.878	0.878	8.3	0.0	8.3	1229.7	O K
600 min Winter	0.889	0.889	8.3	0.0	8.3	1246.0	O K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15 min Winter	138.460	0.0	433.7	0.0	26
30 min Winter	91.070	0.0	563.3	0.0	41
60 min Winter	56.875	0.0	761.6	0.0	70
120 min Winter	35.332	0.0	944.0	0.0	128
180 min Winter	26.592	0.0	1060.0	0.0	186
240 min Winter	21.604	0.0	1139.3	0.0	244
360 min Winter	15.907	0.0	1231.1	0.0	362
480 min Winter	12.670	0.0	1265.4	0.0	478
600 min Winter	10.563	0.0	1264.9	0.0	594

Pell Frischmann		Page 2
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment E.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Overflow (l/s)	Max Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
720 min Winter	0.890	0.890	8.3	0.0	8.3	1249.0	0	K
960 min Winter	0.880	0.880	8.3	0.0	8.3	1231.9	0	K
1440 min Winter	0.832	0.832	8.3	0.0	8.3	1156.3	0	K
2160 min Winter	0.745	0.745	8.3	0.0	8.3	1021.7	0	K
2880 min Winter	0.667	0.667	8.3	0.0	8.3	903.4	0	K
4320 min Winter	0.536	0.536	8.3	0.0	8.3	711.3	0	K
5760 min Winter	0.430	0.430	8.3	0.0	8.3	561.9	0	K
7200 min Winter	0.350	0.350	8.3	0.0	8.3	451.2	0	K
8640 min Winter	0.289	0.289	8.2	0.0	8.2	369.3	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720 min Winter	9.077	0.0	1253.1	0.0	708
960 min Winter	7.106	0.0	1225.6	0.0	934
1440 min Winter	4.989	0.0	1168.5	0.0	1364
2160 min Winter	3.489	0.0	1714.1	0.0	1692
2880 min Winter	2.715	0.0	1776.6	0.0	2108
4320 min Winter	1.930	0.0	1883.7	0.0	2940
5760 min Winter	1.531	0.0	2022.4	0.0	3696
7200 min Winter	1.296	0.0	2138.2	0.0	4464
8640 min Winter	1.141	0.0	2255.8	0.0	5112

Pell Frischmann		Page 3
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment E.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
10080 min Winter	0.244	0.244	8.1	0.0	8.1	309.8	O K	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
10080 min Winter	1.032	0.0	2374.0	0.0	5848

Pell Frischmann		Page 4
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment E.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
FEH Rainfall Version	2013	Cv (Winter)	1.000
Site Location GB 450501 306499 SK 50501 06499	Shortest Storm (mins)	15	
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	No	Climate Change %	+40

Time Area Diagram

Total Area (ha) 1.380

Time (mins)	Area	Time (mins)	Area	Time (mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4 0.460	4	8 0.460	8	12 0.460

Pell Frischmann		Page 5
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:12 File Catchment E.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	1220.0	1.500	1878.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0131-8300-1200-8300	Sump Available	Yes
Design Head (m)	1.200	Diameter (mm)	131
Design Flow (l/s)	8.3	Invert Level (m)	0.000
Flush-Flo™	Calculated Minimum Outlet Pipe Diameter (mm)	150	
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm)	1200
Application	Surface		

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.200	8.3	Kick-Flo®	0.764	6.7
Flush-Flo™	0.353	8.3	Mean Flow over Head Range	-	7.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:12
File Catchment E.SRCX
Innovyze

Designed by JNicholson
Checked by

Source Control 2020.1

Page 6

Depth (m)	Flow (l/s)										
0.100	4.7	0.600	7.9	1.600	9.5	2.600	12.0	5.000	16.3	7.500	19.8
0.200	7.9	0.800	6.9	1.800	10.0	3.000	12.8	5.500	17.1	8.000	20.4
0.300	8.3	1.000	7.6	2.000	10.6	3.500	13.8	6.000	17.8	8.500	21.0
0.400	8.3	1.200	8.3	2.200	11.0	4.000	14.7	6.500	18.5	9.000	21.6
0.500	8.1	1.400	8.9	2.400	11.5	4.500	15.5	7.000	19.2	9.500	22.2

Weir Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 1.500

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:13	Designed by JNicholson	
File	Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
15 min Winter	0.359	0.359	8.3	0.0	8.3	334.5	0 K	
30 min Winter	0.460	0.460	8.3	0.0	8.3	437.8	0 K	
60 min Winter	0.556	0.556	8.3	0.0	8.3	539.8	0 K	
120 min Winter	0.662	0.662	8.3	0.0	8.3	655.7	0 K	
180 min Winter	0.723	0.723	8.3	0.0	8.3	725.4	0 K	
240 min Winter	0.762	0.762	8.3	0.0	8.3	771.0	0 K	
360 min Winter	0.804	0.804	8.3	0.0	8.3	819.4	0 K	
480 min Winter	0.818	0.818	8.3	0.0	8.3	836.4	0 K	
600 min Winter	0.819	0.819	8.3	0.0	8.3	837.3	0 K	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15 min Winter	138.460	0.0	323.5	0.0	26
30 min Winter	91.070	0.0	426.4	0.0	40
60 min Winter	56.875	0.0	553.3	0.0	70
120 min Winter	35.332	0.0	688.1	0.0	126
180 min Winter	26.592	0.0	776.5	0.0	184
240 min Winter	21.604	0.0	840.6	0.0	244
360 min Winter	15.907	0.0	926.7	0.0	360
480 min Winter	12.670	0.0	982.1	0.0	474
600 min Winter	10.563	0.0	1021.3	0.0	588

Pell Frischmann		Page 2
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:13	Designed by JNicholson	
File	Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Overflow (l/s)	Max Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
720 min Winter	0.812	0.812	8.3	0.0	8.3	829.0	0	K
960 min Winter	0.784	0.784	8.3	0.0	8.3	796.4	0	K
1440 min Winter	0.706	0.706	8.3	0.0	8.3	705.8	0	K
2160 min Winter	0.601	0.601	8.3	0.0	8.3	588.9	0	K
2880 min Winter	0.508	0.508	8.3	0.0	8.3	488.0	0	K
4320 min Winter	0.359	0.359	8.3	0.0	8.3	334.2	0	K
5760 min Winter	0.256	0.256	8.1	0.0	8.1	233.9	0	K
7200 min Winter	0.193	0.193	7.8	0.0	7.8	173.9	0	K
8640 min Winter	0.156	0.156	7.4	0.0	7.4	139.3	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720 min Winter	9.077	0.0	1050.6	0.0	700
960 min Winter	7.106	0.0	1090.9	0.0	916
1440 min Winter	4.989	0.0	1134.7	0.0	1124
2160 min Winter	3.489	0.0	1237.1	0.0	1544
2880 min Winter	2.715	0.0	1283.1	0.0	1964
4320 min Winter	1.930	0.0	1364.7	0.0	2724
5760 min Winter	1.531	0.0	1452.3	0.0	3400
7200 min Winter	1.296	0.0	1535.6	0.0	4040
8640 min Winter	1.141	0.0	1620.5	0.0	4664

Pell Frischmann		Page 3
5 Manchester Square		
London		
W1U 3PD		
Date 28/05/2024 12:13	Designed by JNicholson	
File	Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
10080 min Winter	0.140	0.140		6.9	0.0	6.9	124.8	O K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
10080 min Winter	1.032	0.0	1706.6	0.0	5256

Pell Frischmann		Page 4
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:13	Designed by JNicholson	
File	Checked by	
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
FEH Rainfall Version	2013	Cv (Winter)	1.000
Site Location GB 450501 306499 SK 50501 06499	Shortest Storm (mins)	15	
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	No	Climate Change %	+40

Time Area Diagram

Total Area (ha) 0.990

Time (mins)	Area	Time (mins)	Area	Time (mins)	Area
From:	To:	From:	To:	From:	To:
0	4 0.330	4	8 0.330	8	12 0.330

Pell Frischmann		Page 5
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:13	Designed by JNicholson	
File	Checked by	
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	865.0	1.500	1497.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0131-8300-1200-8300	Sump Available	Yes
Design Head (m)	1.200	Diameter (mm)	131
Design Flow (l/s)	8.3	Invert Level (m)	0.000
Flush-Flo™	Calculated Minimum Outlet Pipe Diameter (mm)	150	
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm)	1200
Application	Surface		

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.200	8.3	Kick-Flo®	0.764	6.7
Flush-Flo™	0.353	8.3	Mean Flow over Head Range	-	7.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:13
File
Innovyze

Designed by JNicholson
Checked by

Source Control 2020.1

Page 6

Depth (m)	Flow (l/s)										
0.100	4.7	0.600	7.9	1.600	9.5	2.600	12.0	5.000	16.3	7.500	19.8
0.200	7.9	0.800	6.9	1.800	10.0	3.000	12.8	5.500	17.1	8.000	20.4
0.300	8.3	1.000	7.6	2.000	10.6	3.500	13.8	6.000	17.8	8.500	21.0
0.400	8.3	1.200	8.3	2.200	11.0	4.000	14.7	6.500	18.5	9.000	21.6
0.500	8.1	1.400	8.9	2.400	11.5	4.500	15.5	7.000	19.2	9.500	22.2

Hydro-Brake® Optimum Outflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 1.500

Pell Frischmann		Page 1
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment A.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level	Max Depth	Max Control	Max Overflow	Max Σ	Max Outflow	Max Volume	Status
	(m)	(m)	(1/s)	(1/s)	(1/s)		(m³)	
15 min Winter	0.436	0.436	8.8	0.0	8.8	499.8	0 K	
30 min Winter	0.559	0.559	8.8	0.0	8.8	655.1	0 K	
60 min Winter	0.678	0.678	8.8	0.0	8.8	811.1	0 K	
120 min Winter	0.811	0.811	8.8	0.0	8.8	992.8	0 K	
180 min Winter	0.889	0.889	8.8	0.0	8.8	1103.9	0 K	
240 min Winter	0.941	0.941	8.8	0.0	8.8	1177.8	0 K	
360 min Winter	0.998	0.998	8.8	0.0	8.8	1262.6	0 K	
480 min Winter	1.024	1.024	8.8	0.0	8.8	1301.5	0 K	
600 min Winter	1.034	1.034	8.8	0.0	8.8	1316.6	0 K	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15 min Winter	138.460	0.0	473.2	0.0	26
30 min Winter	91.070	0.0	613.3	0.0	41
60 min Winter	56.875	0.0	817.8	0.0	70
120 min Winter	35.332	0.0	1013.0	0.0	128
180 min Winter	26.592	0.0	1137.5	0.0	186
240 min Winter	21.604	0.0	1223.4	0.0	244
360 min Winter	15.907	0.0	1321.7	0.0	360
480 min Winter	12.670	0.0	1353.3	0.0	476
600 min Winter	10.563	0.0	1348.1	0.0	592

Pell Frischmann		Page 2
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment A.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Overflow (l/s)	Max Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
720 min Winter	1.035	1.035	8.8	0.0	8.8	1317.8	0	K
960 min Winter	1.021	1.021	8.8	0.0	8.8	1296.1	0	K
1440 min Winter	0.963	0.963	8.8	0.0	8.8	1211.1	0	K
2160 min Winter	0.873	0.873	8.8	0.0	8.8	1080.5	0	K
2880 min Winter	0.791	0.791	8.8	0.0	8.8	964.3	0	K
4320 min Winter	0.626	0.626	8.8	0.0	8.8	742.4	0	K
5760 min Winter	0.498	0.498	8.8	0.0	8.8	576.2	0	K
7200 min Winter	0.399	0.399	8.8	0.0	8.8	453.4	0	K
8640 min Winter	0.323	0.323	8.8	0.0	8.8	362.7	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720 min Winter	9.077	0.0	1336.1	0.0	706
960 min Winter	7.106	0.0	1308.0	0.0	930
1440 min Winter	4.989	0.0	1248.0	0.0	1354
2160 min Winter	3.489	0.0	1831.4	0.0	1684
2880 min Winter	2.715	0.0	1897.7	0.0	2144
4320 min Winter	1.930	0.0	2015.7	0.0	2948
5760 min Winter	1.531	0.0	2156.3	0.0	3744
7200 min Winter	1.296	0.0	2280.1	0.0	4464
8640 min Winter	1.141	0.0	2406.2	0.0	5112

Pell Frischmann
 5 Manchester Square
 London
 W1U 3PD
 Date 28/05/2024 12:11
 File Catchment A.SRCX
 Innovyze

Page 3

Designed by JNicholson
 Checked by

Source Control 2020.1

Summary of Results for 100 year Return Period (+40%)

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
10080 min Winter	0.268	0.268	8.7	0.0	8.7	297.6	0	K

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
10080 min Winter	1.032	0.0	2533.9	0.0	5848

Pell Frischmann		Page 4
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment A.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Rainfall Details

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
FEH Rainfall Version	2013	Cv (Winter)	1.000
Site Location GB 450501 306499 SK 50501 06499	Shortest Storm (mins)	15	
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	No	Climate Change %	+40

Time Area Diagram

Total Area (ha) 1.470

Time (mins)	Area	Time (mins)	Area	Time (mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4 0.490	4	8 0.490	8	12 0.490

Pell Frischmann		Page 5
5 Manchester Square London W1U 3PD		
Date 28/05/2024 12:11 File Catchment A.SRCX	Designed by JNicholson Checked by	
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	1058.0	1.500	1725.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0134-8800-1200-8800	Sump Available	Yes
Design Head (m)	1.200	Diameter (mm)	134
Design Flow (l/s)	8.8	Invert Level (m)	0.000
Flush-Flo™	Calculated Minimum Outlet Pipe Diameter (mm)	150	
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm)	1200
Application	Surface		

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.200	8.8	Kick-Flo®	0.769	7.1
Flush-Flo™	0.355	8.8	Mean Flow over Head Range	-	7.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

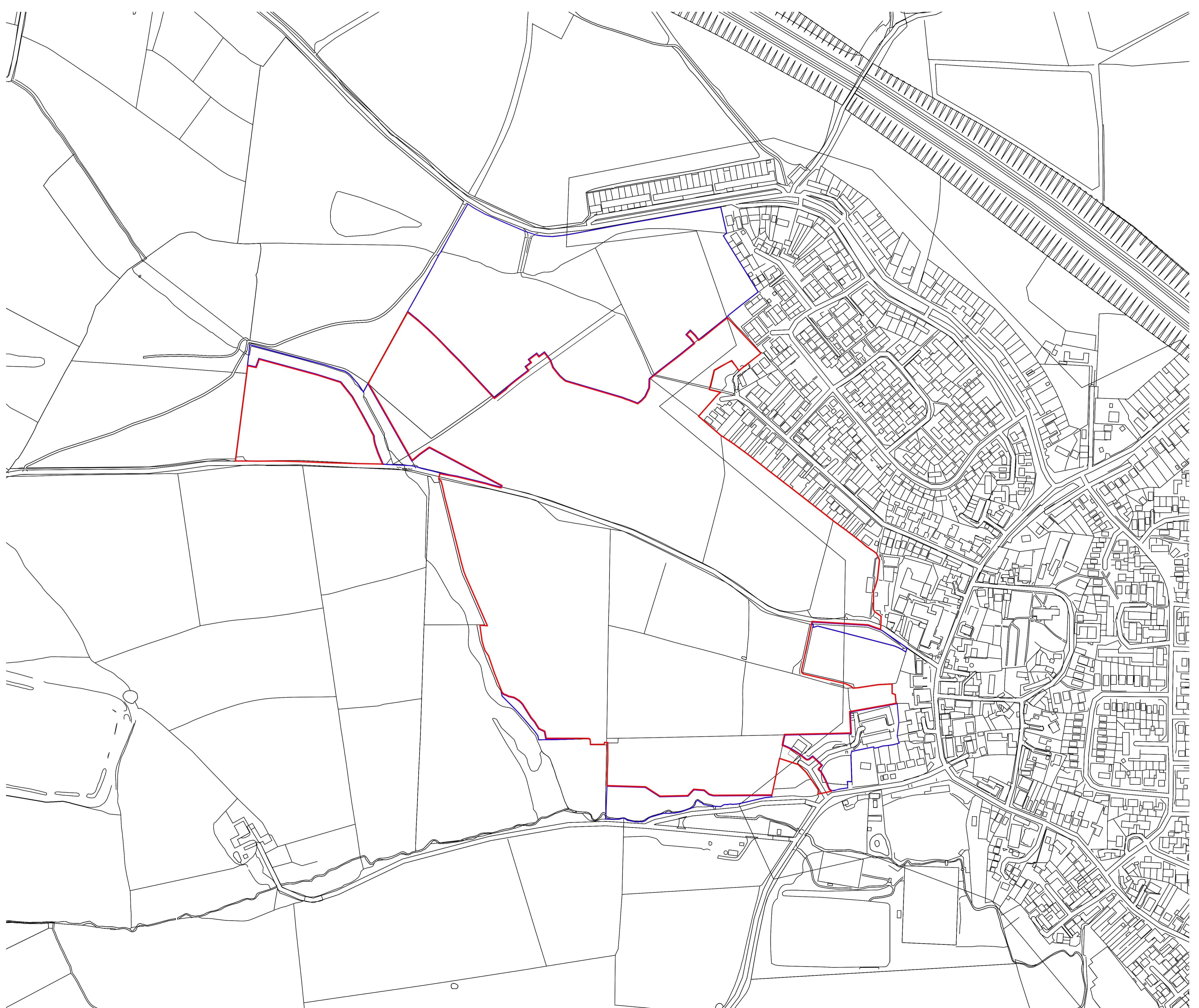
Pell Frischmann
5 Manchester Square
London
W1U 3PD
Date 28/05/2024 12:11
File Catchment A.SRCX
Innovyze

Designed by JNicholson
Checked by

Source Control 2020.1

Page 6

Depth (m)	Flow (l/s)										
0.100	4.8	0.600	8.4	1.600	10.1	2.600	12.7	5.000	17.3	7.500	21.0
0.200	8.3	0.800	7.3	1.800	10.6	3.000	13.6	5.500	18.1	8.000	21.7
0.300	8.7	1.000	8.1	2.000	11.2	3.500	14.6	6.000	18.9	8.500	22.3
0.400	8.8	1.200	8.8	2.200	11.7	4.000	15.6	6.500	19.6	9.000	22.9
0.500	8.6	1.400	9.5	2.400	12.2	4.500	16.5	7.000	20.3	9.500	23.6


Weir Overflow Control

Discharge Coef 0.544 Width (m) 1.000 Invert Level (m) 1.500

SUMMARY TABLE		DESIGN CONDITIONS			
		1	2	3	4
Land Use Type	Roads (excluding low traffic roads, highly frequented lorry approaches to industrial estates, trunk roads/motorways)				
Pollution Hazard Level	Medium				
Pollution Hazard Indices					
TSS	0.7				
Metals	0.6				
Hydrocarbons	0.7				
SuDS components proposed					
Component 1	Pond or wetland	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Ponds/wetlands should be preceded by an upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events		
Component 2	Filter drain (where the trench is not designed as an infiltration component)	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Filter drains should be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events		
Component 3	None				
SuDS Pollution Mitigation Indices					
TSS	0.9				
Metals	0.9				
Hydrocarbons	0.7				
Groundwater protection type	None				
Groundwater protection Pollution Mitigation Indices					
TSS	0				
Metals	0				
Hydrocarbons	0				
Combined Pollution Mitigation Indices					
TSS	0.9	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England			
Metals	0.9				
Hydrocarbons	0.7				
Acceptability of Pollution Mitigation					
TSS	Sufficient				
Metals	Sufficient				
Hydrocarbons	Sufficient				

