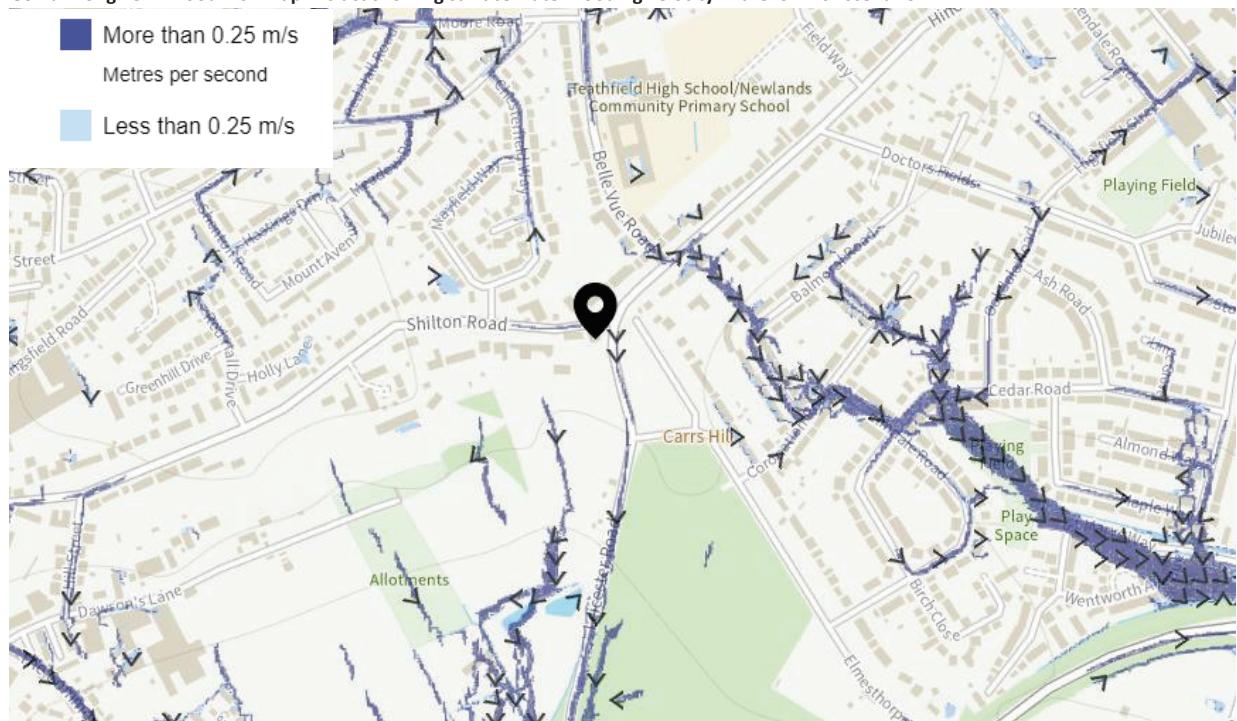
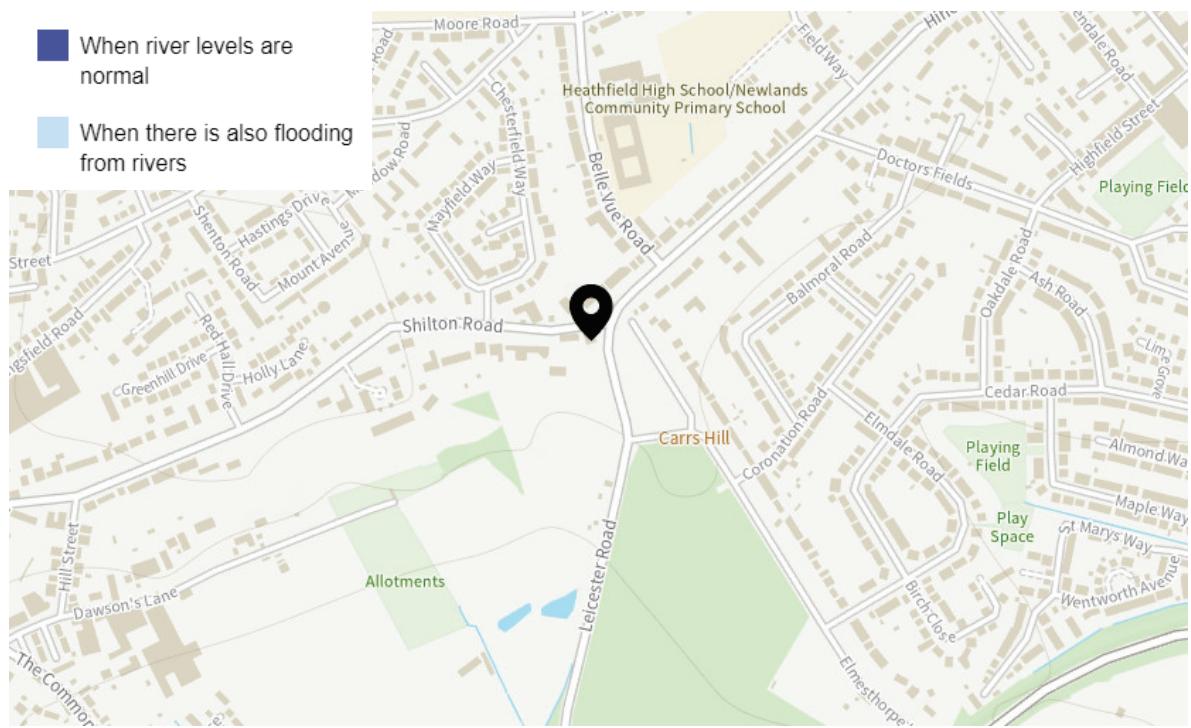

Appendix E


Gov.uk Long Term Flood Risk Map Extract showing extent of surface water flooding


Gov.uk Long Term Flood Risk Map Extract showing surface water flooding depth in the low risk scenario

Gov.uk Long Term Flood Risk Map Extract showing surface water flooding velocity in the low risk scenario



Gov.uk Long Term Flood Risk Map Extract showing Reservoirs flooding risk

Appendix F

GENERAL CONDITIONS AND PRECAUTIONS TO BE TAKEN WHEN CARRYING OUT WORK ADJACENT TO SEVERN TRENT WATER'S APPARATUS

Please ensure that a copy of these conditions is passed to your representative and/or your contractor on site. If any damage is caused to Severn Trent Water Limited (STW) apparatus (defined below), the person, contractor or subcontractor responsible must inform STW immediately on: 0800 783 4444 (24 hours)

- a) These general conditions and precautions apply to the public sewerage, water distribution and cables in ducts including (but not limited to) sewers which are the subject of an Agreement under Section 104 of the Water Industry Act 1991 (a legal agreement between a developer and STW, where a developer agrees to build sewers to an agreed standard, which STW will then adopt); mains installed in accordance with an agreement for the self-construction of water mains entered into with STW and the assets described at condition b) of these general conditions and precautions. Such apparatus is referred to as "STW Apparatus" in these general conditions and precautions.
- b) Please be aware that due to The Private Sewers Transfer Regulations June 2011, the number of public sewers has increased, but many of these are not shown on the public sewer record. However, some idea of their positions may be obtained from the position of inspection covers and their existence must be anticipated.
- c) On request, STW will issue a copy of the plan showing the approximate locations of STW Apparatus although in certain instances a charge will be made. The position of private drains, private sewers and water service pipes to properties are not normally shown but their presence must be anticipated. This plan and the information supplied with it is furnished as a general guide only and STW does not guarantee its accuracy.
- d) STW does not update these plans on a regular basis. Therefore the position and depth of STW Apparatus may change and this plan is issued subject to any such change. Before any works are carried out, you should confirm whether any changes to the plan have been made since it was issued.
- e) The plan must not be relied upon in the event of excavations or other works in the vicinity of STW Apparatus. It is your responsibility to ascertain the precise location of any STW Apparatus prior to undertaking any development or other works (including but not limited to excavations).
- f) No person or company shall be relieved from liability for loss and/or damage caused to STW Apparatus by reason of the actual position and/or depths of STW Apparatus being different from those shown on the plan.

In order to achieve safe working conditions adjacent to any STW Apparatus the following should be observed:

1. All STW Apparatus should be located by hand digging prior to the use of mechanical excavators.
2. All information set out in any plans received from us, or given by our staff at the site of the works, about the position and depth of the mains, is approximate. Every possible precaution should be taken to avoid damage to STW Apparatus. You or your contractor must ensure the safety of STW Apparatus and will be responsible for the cost of repairing any loss and/or damage caused (including without limitation replacement parts).
3. Water mains are normally laid at a depth of 900mm. No records are kept of customer service pipes which are normally laid at a depth of 750mm; but some idea of their positions may be obtained from the position of stop tap covers and their existence must be anticipated.
4. During construction work, where heavy plant will cross the line of STW Apparatus, specific crossing points must be agreed with STW and suitably reinforced where required. These crossing points should be clearly marked and crossing of the line of STW Apparatus at other locations must be prevented.
5. Where it is proposed to carry out piling or boring within 20 metres of any STW Apparatus, STW should be consulted to enable any affected STW Apparatus to be surveyed prior to the works commencing.
6. Where excavation of trenches adjacent to any STW Apparatus affects its support, the STW Apparatus must be supported to the satisfaction of STW. Water mains and some sewers are pressurised and can fail if excavation removes support to thrust blocks to bends and other fittings.
7. Where a trench is excavated crossing or parallel to the line of any STW Apparatus, the backfill should be adequately compacted to prevent any settlement which could subsequently cause damage to the STW Apparatus. In special cases, it may be necessary to provide permanent support to STW Apparatus which has been exposed over a length of the excavation before backfilling and reinstatement is carried out. There should be no concrete backfill in contact with the STW Apparatus.
8. No other apparatus should be laid along the line of STW Apparatus irrespective of clearance. Above ground apparatus must not be located within a minimum of 3 metres either side of the centre line of STW Apparatus for smaller sized pipes and 6 metres either side for larger sized pipes without prior approval. No manhole or chamber shall be built over or around any STW Apparatus.
9. A minimum radial clearance of 300 millimetres should be allowed between any plant or equipment being installed and existing STW Apparatus. We reserve the right to increase this distance where strategic assets are affected.
10. Where any STW Apparatus coated with a special wrapping is damaged, even to a minor extent, STW must be notified and the trench left open until the damage has been inspected and the necessary repairs have been carried out. In the case of any material damage to any STW Apparatus causing leakage, weakening of the mechanical strength of the pipe or corrosion-protection damage, the necessary remedial work will be recharged to you.
11. It may be necessary to adjust the finished level of any surface boxes which may fall within your proposed construction. Please ensure that these are not damaged, buried or otherwise rendered inaccessible as a result of the works and that all stop taps, valves, hydrants, etc. remain accessible and operable. Minor reduction in existing levels may result in conflict with STW Apparatus such as valve spindles or tops of hydrants housed under the surface boxes. Checks should be made during site investigations to ascertain the level of such STW Apparatus in order to determine any necessary alterations in advance of the works.
12. With regard to any proposed resurfacing works, you are required to contact STW on the number given above to arrange a site inspection to establish the condition of any STW Apparatus in the nature of surface boxes or manhole covers and frames affected by the works. STW will then advise on any measures to be taken, in the event of this a proportionate charge will be made.
13. You are advised that STW will not agree to either the erection of posts, directly over or within 1.0 metre of valves and hydrants.
14. No explosives are to be used in the vicinity of any STW Apparatus without prior consultation with STW.

TREE PLANTING RESTRICTIONS

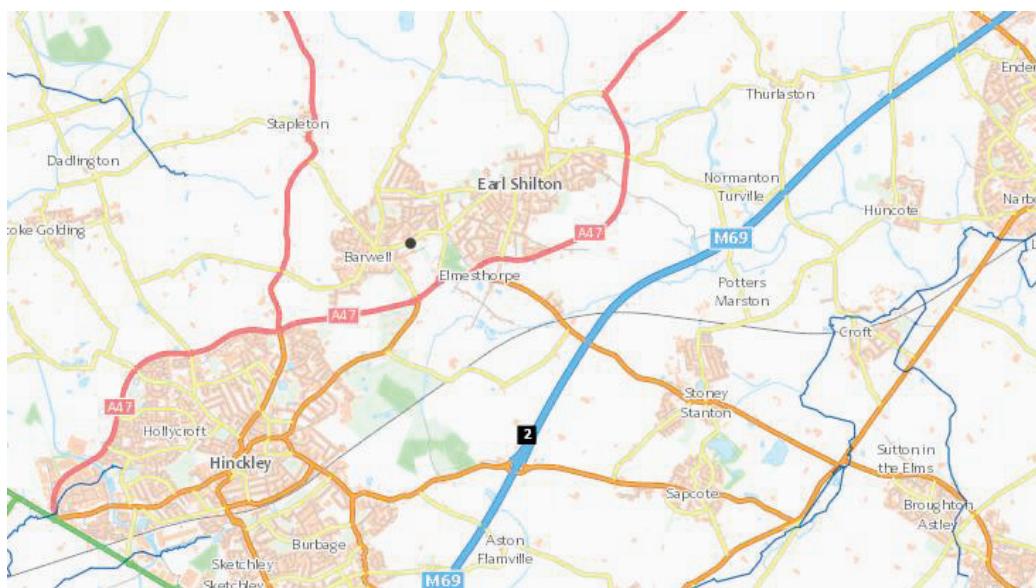
There are many problems with the location of trees adjacent to sewers, water mains and other STW Apparatus and these can lead to the loss of trees and hence amenity to the area which many people may have become used to. It is best if the problem is not created in the first place. Set out below are the recommendations for tree planting in close proximity to public sewers, water mains and other STW Apparatus.

15. Please ensure that, in relation to STW Apparatus, the mature root systems and canopies of any tree planted do not and will not encroach within the recommended distances specified in the notes below.
16. Both Poplar and Willow trees have extensive root systems and should not be planted within 12 metres of a sewer, water main or other STW Apparatus.
17. The following trees and those of similar size, be they deciduous or evergreen, should not be planted within 6 metres of a sewer, water main or other STW Apparatus. E.g. Ash, Beech, Birch, most Conifers, Elm, Horse Chestnut, Lime, Oak, Sycamore, Apple and Pear. Asset Protection Statements Updated May 2014
18. STW personnel require a clear path to conduct surveys etc. No shrubs or bushes should be planted within 2 metre of the centre line of a sewer, water main or other STW Apparatus.
19. In certain circumstances, both STW and landowners may wish to plant shrubs/bushes in close proximity to a sewer, water main or other STW Apparatus for screening purposes. The following are shallow rooting and are suitable for this purpose: Blackthorn, Broom, Cotoneaster, Elder, Hazel, Laurel, Privet, Quickthorn, Snowberry, and most ornamental flowering shrubs.

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
	F			
	F			
	F			
	F			
	F			
	F			
1001	F	131.59	130.17	1.42
1101	F	130.53	127.96	2.57
2001	F	128.19	126.01	2.18
2101	F	129.55	127.19	2.36
3001	F	127.78	125.8	1.98
3002	F	127.48	125.77	1.71
3103	F	126.9	124.96	1.94
4103	F	126.48	124.61	1.87
5002	F	116.58	114.83	1.75
6003	F	113.47	111.34	2.13
6005	F	113.1	111.65	1.45
6007	F	115.29	113.76	1.53
6902	F	116.8	115.35	1.45
6904	F	114.57	113.1	1.47
7101	F	113.55	111.97	1.58
7701	F	115.72	113.98	1.74
7703	F	113.93	112.33	1.6
7901	F	110.11	108.9	1.21
7903	F	110	108.1	1.9
5001	S	116.64	115.42	1.22
6003	S	116.33	114.92	1.41
5101	S	116.77	115.93	0.84
5102	S	118.12	116.43	1.69
6001	S	113.37	111.8	1.57
6002	S	113.43	111.94	1.49
6004	S	115.53	114.23	1.3
6006	S	113.16	112.12	1.04
6901	S	116.75	115.51	1.23
6903	S	114.75	113.46	1.29
7102	S	113.8	112.19	1.61
7103	S	112.98	111.92	1.06
7704	S	113.87	112.24	1.63
7802	S	115.12	113.66	1.46
7902	S	110.47	108.77	1.7
7906	S	113.71	112.09	1.61

--	--	--	--	--

--	--	--	--	--	--


--	--	--	--	--	--	--

--	--	--	--	--	--	--

Appendix G

Environment Agency Main Rivers Map Extract

Appendix H

Diamond Wood & Shaw Limited

The Old School · Blaby Road · Enderby · Leicester · LE19 4AR
Tel: 0116 284 8989 · Email: mail@dwsLtd.co.uk

Surface Water Drainage Calculations

Client: DT Developers

Architect: Hayward Architects Ltd

Project: Leicester Road, Barwell

Project No: 24-21177

Document No: 0-010

Issue: Rev P1: January 2025
Rev P2: February 2025
Rev P3: July 2025

Status: Preliminary

Date: 8th July 2025

Engineer: LM

Issue Status:
A=Approval
B=Building Regulations
C=Construction
D=Draft
P=Preliminary
R=Review
T=Tender
Z=Final Construction

Calculated by:	Leigh Middleton
Site name:	Leicester Road, Barwell
Site location:	

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude:	52.56923° N
Longitude:	1.33196° W
Reference:	3674547351
Date:	Jan 14 2025 09:46

Runoff estimation approach

IH124

Site characteristics

Total site area (ha): 1.24

Notes

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

When Q_{BAR} is $< 2.0 \text{ l/s/ha}$ then limiting discharge rates are set at 2.0 l/s/ha .

Methodology

 Q_{BAR} estimation method: Calculate from SPR and SAAR

SPR estimation method: Calculate from SOIL type

Soil characteristics

SOIL type:

	Default	Edited
	4	4
	N/A	N/A
	0.47	0.47

(2) Are flow rates $< 5.0 \text{ l/s}$?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological characteristics

SAAR (mm):

	Default	Edited
	634	634
	4	4
	0.83	0.83
	2	2
	2.57	2.57
	3.04	3.04

(3) Is $SPR/SPRHOST \leq 0.3$?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Default Edited

Q_{BAR} (l/s):	5.33	5.33
1 in 1 year (l/s):	4.43	4.43
1 in 30 years (l/s):	10.66	10.66
1 in 100 year (l/s):	13.7	13.7
1 in 200 years (l/s):	16.21	16.21

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.eksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.eksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Diamond Wood & Shaw Limited		Page 1
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years)	100	PIMP (%)	100
M5-60 (mm)	19.700	Add Flow / Climate Change (%)	0
Ratio R	0.404	Minimum Backdrop Height (m)	0.200
Maximum Rainfall (mm/hr)	50	Maximum Backdrop Height (m)	1.500
Maximum Time of Concentration (mins)	30	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.000	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Type	Auto Design
1.000	9.000	1.100	8.2	0.060	4.00	0.0	0.600	o	300	Pipe/Conduit		
1.001	23.900	2.680	8.9	0.081	0.00	0.0	0.600	o	300	Pipe/Conduit		
1.002	10.200	0.090	113.3	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit		
2.000	36.900	2.240	16.5	0.074	4.00	0.0	0.600	o	300	Pipe/Conduit		
2.001	8.000	0.060	133.3	0.008	0.00	0.0	0.600	o	300	Pipe/Conduit		
1.003	27.900	1.350	20.7	0.096	0.00	0.0	0.600	o	300	Pipe/Conduit		
1.004	16.800	0.750	22.4	0.047	0.00	0.0	0.600	o	300	Pipe/Conduit		
1.005	14.100	0.100	141.0	0.049	0.00	0.0	0.600	o	300	Pipe/Conduit		
1.006	7.600	0.060	126.7	0.040	0.00	0.0	0.600	o	300	Pipe/Conduit		
1.007	11.600	0.080	145.0	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit		

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
1.000	50.00	4.03	124.100	0.060	0.0	0.0	0.0	5.53	390.8	8.1
1.001	50.00	4.10	123.000	0.141	0.0	0.0	0.0	5.30	374.3	19.1
1.002	50.00	4.22	120.320	0.141	0.0	0.0	0.0	1.48	104.3	19.1
2.000	50.00	4.16	122.550	0.074	0.0	0.0	0.0	3.89	275.2	10.0
2.001	50.00	4.26	120.310	0.082	0.0	0.0	0.0	1.36	96.1	11.1
1.003	50.00	4.39	120.250	0.319	0.0	0.0	0.0	3.47	245.6	43.2
1.004	50.00	4.47	118.900	0.366	0.0	0.0	0.0	3.34	235.8	49.6
1.005	50.00	4.65	118.150	0.415	0.0	0.0	0.0	1.32	93.5	56.2
1.006	50.00	4.74	118.050	0.455	0.0	0.0	0.0	1.40	98.6	61.6
1.007	50.00	4.89	117.990	0.455	0.0	0.0	0.0	1.30	92.1	61.6

Diamond Wood & Shaw Limited								Page 2
The Old School Blaby Road Enderby Leicester, LE19 4AR			24-21177 Leicester Road, Barwell Surface Water Calculations					
Date 08/07/2025 11:22			Designed by LM					
File 24-21177 0-010P3 Surfac...			Checked by BP					
Innovyze				Network 2020.1.3				

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.000	26.500	0.190	139.5	0.008	4.00	0.0	0.600	o	300	Pipe/Conduit	🔒
1.008	16.400	0.110	149.1	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.009	19.600	0.150	130.7	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.010	16.000	0.510	31.4	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.011	44.800	0.300	149.3	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.012	45.000	0.300	150.0	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.013	25.700	0.173	148.6	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.014	45.000	0.300	150.0	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.015	19.800	0.132	150.0	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.016	45.000	0.300	150.0	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓
1.017	18.700	0.125	149.6	0.000	0.00	0.0	0.600	o	300	Pipe/Conduit	🔓

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
3.000	50.00	4.33	118.100	0.008	0.0	0.0	0.0	1.33	94.0	1.1
1.008	50.00	5.10	117.910	0.463	0.0	0.0	0.0	1.29	90.9	62.7
1.009	50.00	5.34	117.800	0.463	0.0	0.0	0.0	1.37	97.1	62.7
1.010	50.00	5.44	117.650	0.463	0.0	0.0	0.0	2.82	199.1	62.7
1.011	50.00	6.02	117.140	0.463	0.0	0.0	0.0	1.28	90.8	62.7
1.012	50.00	6.60	116.840	0.463	0.0	0.0	0.0	1.28	90.6	62.7
1.013	50.00	6.93	116.540	0.463	0.0	0.0	0.0	1.29	91.0	62.7
1.014	50.00	7.52	116.367	0.463	0.0	0.0	0.0	1.28	90.6	62.7
1.015	50.00	7.78	116.067	0.463	0.0	0.0	0.0	1.28	90.6	62.7
1.016	50.00	8.36	115.935	0.463	0.0	0.0	0.0	1.28	90.6	62.7
1.017	50.00	8.61	115.635	0.463	0.0	0.0	0.0	1.28	90.7	62.7

Diamond Wood & Shaw Limited								Page 3
The Old School Blaby Road Enderby Leicester, LE19 4AR				24-21177 Leicester Road, Barwell Surface Water Calculations				
Date 08/07/2025 11:22				Designed by LM				
File 24-21177 0-010P3 Surfac...				Checked by BP				
Innovyze				Network 2020.1.3				

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam., L*W (mm)	Pipe Out			PN	Pipes In			Backdrop (mm)
					PN	Invert Level (m)	Diameter (mm)		PN	Invert Level (m)	Diameter (mm)	
S1	125.700	1.600	Open Manhole	1200	1.000	124.100	300					
S2	124.600	1.600	Open Manhole	1200	1.001	123.000	300	1.000	123.000		300	
S3	122.110	1.790	Open Manhole	1200	1.002	120.320	300	1.001	120.320		300	
S4	124.150	1.600	Open Manhole	1200	2.000	122.550	300					
S5	121.900	1.590	Open Manhole	1200	2.001	120.310	300	2.000	120.310		300	
S6	121.850	1.620	Open Manhole	1200	1.003	120.250	300	1.002	120.230		300	
								2.001	120.250		300	
S7	120.500	1.600	Open Manhole	1800	1.004	118.900	300	1.003	118.900		300	
S8	119.600	1.450	Open Manhole	1800	1.005	118.150	300	1.004	118.150		300	
S9	119.250	1.200	Open Manhole	1800	1.006	118.050	300	1.005	118.050		300	
S10	119.200	1.210	Open Manhole	1800	1.007	117.990	300	1.006	117.990		300	
S11	121.400	3.300	Open Manhole	1200	3.000	118.100	300					
S12	119.200	1.290	Open Manhole	1200	1.008	117.910	300	1.007	117.910		300	
								3.000	117.910		300	
S13	119.000	1.200	Junction		1.009	117.800	300	1.008	117.800		300	
S14	119.250	1.600	Open Manhole	1200	1.010	117.650	300	1.009	117.650		300	
S15	119.600	2.460	Open Manhole	1200	1.011	117.140	300	1.010	117.140		300	
S16	119.600	2.760	Open Manhole	1200	1.012	116.840	300	1.011	116.840		300	
S17	119.000	2.460	Open Manhole	1200	1.013	116.540	300	1.012	116.540		300	
S18	118.500	2.133	Open Manhole	1200	1.014	116.367	300	1.013	116.367		300	
S19	118.000	1.933	Open Manhole	1200	1.015	116.067	300	1.014	116.067		300	
S10	117.500	1.565	Open Manhole	1200	1.016	115.935	300	1.015	115.935		300	
S21	117.000	1.365	Open Manhole	1200	1.017	115.635	300	1.016	115.635		300	
6901	116.750	1.240	Open Manhole	0		OUTFALL		1.017	115.510		300	

No coordinates have been specified, layout information cannot be produced.

Diamond Wood & Shaw Limited								Page 4
The Old School Blaby Road Enderby Leicester, LE19 4AR			24-21177 Leicester Road, Barwell Surface Water Calculations					
Date 08/07/2025 11:22			Designed by LM					
File 24-21177 0-010P3 Surfac...			Checked by BP					
Innovyze		Network 2020.1.3						

Pipeline Schedules for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	o	300	S1	125.700	124.100	1.300	Open Manhole	1200
1.001	o	300	S2	124.600	123.000	1.300	Open Manhole	1200
1.002	o	300	S3	122.110	120.320	1.490	Open Manhole	1200
2.000	o	300	S4	124.150	122.550	1.300	Open Manhole	1200
2.001	o	300	S5	121.900	120.310	1.290	Open Manhole	1200
1.003	o	300	S6	121.850	120.250	1.300	Open Manhole	1200
1.004	o	300	S7	120.500	118.900	1.300	Open Manhole	1800
1.005	o	300	S8	119.600	118.150	1.150	Open Manhole	1800
1.006	o	300	S9	119.250	118.050	0.900	Open Manhole	1800
1.007	o	300	S10	119.200	117.990	0.910	Open Manhole	1800
3.000	o	300	S11	121.400	118.100	3.000	Open Manhole	1200
1.008	o	300	S12	119.200	117.910	0.990	Open Manhole	1200
1.009	o	300	S13	119.000	117.800	0.900	Junction	
1.010	o	300	S14	119.250	117.650	1.300	Open Manhole	1200
1.011	o	300	S15	119.600	117.140	2.160	Open Manhole	1200
1.012	o	300	S16	119.600	116.840	2.460	Open Manhole	1200
1.013	o	300	S17	119.000	116.540	2.160	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	9.000	8.2	S2	124.600	123.000	1.300	Open Manhole	1200
1.001	23.900	8.9	S3	122.110	120.320	1.490	Open Manhole	1200
1.002	10.200	113.3	S6	121.850	120.230	1.320	Open Manhole	1200
2.000	36.900	16.5	S5	121.900	120.310	1.290	Open Manhole	1200
2.001	8.000	133.3	S6	121.850	120.250	1.300	Open Manhole	1200
1.003	27.900	20.7	S7	120.500	118.900	1.300	Open Manhole	1800
1.004	16.800	22.4	S8	119.600	118.150	1.150	Open Manhole	1800
1.005	14.100	141.0	S9	119.250	118.050	0.900	Open Manhole	1800
1.006	7.600	126.7	S10	119.200	117.990	0.910	Open Manhole	1800
1.007	11.600	145.0	S12	119.200	117.910	0.990	Open Manhole	1200
3.000	26.500	139.5	S12	119.200	117.910	0.990	Open Manhole	1200
1.008	16.400	149.1	S13	119.000	117.800	0.900	Junction	
1.009	19.600	130.7	S14	119.250	117.650	1.300	Open Manhole	1200
1.010	16.000	31.4	S15	119.600	117.140	2.160	Open Manhole	1200
1.011	44.800	149.3	S16	119.600	116.840	2.460	Open Manhole	1200
1.012	45.000	150.0	S17	119.000	116.540	2.160	Open Manhole	1200
1.013	25.700	148.6	S18	118.500	116.367	1.833	Open Manhole	1200

Diamond Wood & Shaw Limited						Page 5
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations					
Date 08/07/2025 11:22	Designed by LM					
File 24-21177 0-010P3 Surfac...	Checked by BP					
Innovyze	Network 2020.1.3					

Pipeline Schedules for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH	DIAM., L*W
Sect	(mm)	Name	(m)	(m)	(m)		Connection	(mm)	
1.014	o	300	S18	118.500	116.367	1.833	Open Manhole		1200
1.015	o	300	S19	118.000	116.067	1.633	Open Manhole		1200
1.016	o	300	S10	117.500	115.935	1.265	Open Manhole		1200
1.017	o	300	S21	117.000	115.635	1.065	Open Manhole		1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH	DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)	
1.014	45.000	150.0	S19	118.000	116.067	1.633	Open Manhole		1200
1.015	19.800	150.0	S10	117.500	115.935	1.265	Open Manhole		1200
1.016	45.000	150.0	S21	117.000	115.635	1.065	Open Manhole		1200
1.017	18.700	149.6	6901	116.750	115.510	0.940	Open Manhole		0

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (mm)	D,L (mm)	W (m)
1.017	6901	116.750	115.510	0.000	0	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins)	1
Number of Input Hydrographs	0	Number of Storage Structures	6
Number of Online Controls	2	Number of Time/Area Diagrams	0
Number of Offline Controls	0	Number of Real Time Controls	0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	19.700	Storm Duration (mins)	30
Ratio R	0.404		

Diamond Wood & Shaw Limited The Old School Blaby Road Enderby Leicester, LE19 4AR		24-21177 Leicester Road, Barwell Surface Water Calculations	Page 6
Date 08/07/2025 11:22 File 24-21177 0-010P3 Surfac...		Designed by LM Checked by BP	
Innovyze Network 2020.1.3			

Online Controls for Storm

Hydro-Brake® Optimum Manhole: S3, DS/PN: 1.002, Volume (m³): 3.6

Unit Reference	MD-SHE-0134-1000-1790-1000
Design Head (m)	1.790
Design Flow (l/s)	10.0
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	134
Invert Level (m)	120.320
Minimum Outlet Pipe Diameter (mm)	150
Suggested Manhole Diameter (mm)	1500

Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.790	10.0
Flush-Flo™	0.531	10.0
Kick-Flo®	1.095	7.9
Mean Flow over Head Range	-	8.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)						
0.100	4.8	1.200	8.3	3.000	12.8	7.000	19.1
0.200	8.6	1.400	8.9	3.500	13.7	7.500	19.8
0.300	9.5	1.600	9.5	4.000	14.6	8.000	20.4
0.400	9.9	1.800	10.0	4.500	15.5	8.500	21.0
0.500	10.0	2.000	10.5	5.000	16.3	9.000	21.6
0.600	10.0	2.200	11.0	5.500	17.0	9.500	22.2
0.800	9.7	2.400	11.5	6.000	17.8		
1.000	8.8	2.600	11.9	6.500	18.5		

Hydro-Brake® Optimum Manhole: S14, DS/PN: 1.010, Volume (m³): 3.2

Unit Reference	MD-SHE-0103-5300-1400-5300
Design Head (m)	1.400
Design Flow (l/s)	5.3
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	103
Invert Level (m)	117.650
Minimum Outlet Pipe Diameter (mm)	150
Suggested Manhole Diameter (mm)	1200

Diamond Wood & Shaw Limited		Page 7
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: S14, DS/PN: 1.010, Volume (m³): 3.2

Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.400	5.3
Flush-Flo™	0.419	5.3
Kick-Flo®	0.860	4.2
Mean Flow over Head Range	-	4.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)						
0.100	3.4	1.200	4.9	3.000	7.6	7.000	11.3
0.200	4.8	1.400	5.3	3.500	8.1	7.500	11.7
0.300	5.2	1.600	5.6	4.000	8.7	8.000	12.1
0.400	5.3	1.800	6.0	4.500	9.2	8.500	12.4
0.500	5.3	2.000	6.3	5.000	9.6	9.000	12.8
0.600	5.2	2.200	6.5	5.500	10.1	9.500	13.1
0.800	4.6	2.400	6.8	6.000	10.5		
1.000	4.5	2.600	7.1	6.500	10.9		

Diamond Wood & Shaw Limited The Old School Blaby Road Enderby Leicester, LE19 4AR		24-21177 Leicester Road, Barwell Surface Water Calculations	Page 8
Date 08/07/2025 11:22 File 24-21177 0-010P3 Surfac...		Designed by LM Checked by BP	
Innovyze		Network 2020.1.3	

Storage Structures for Storm

Complex Manhole: S3, DS/PN: 1.002

Cellular Storage

Invert Level (m) 120.320 Safety Factor 2.0
 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95
 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m ²)	Inf. Area (m ²)	Depth (m)	Area (m ²)	Inf. Area (m ²)
0.000	48.0	48.0	0.801	0.0	73.6
0.800	48.0	73.6			

Porous Car Park

Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 7.2
 Membrane Percolation (mm/hr) 1000 Length (m) 65.6
 Max Percolation (l/s) 131.2 Slope (1:X) 12.0
 Safety Factor 2.0 Depression Storage (mm) 5
 Porosity 0.30 Evaporation (mm/day) 3
 Invert Level (m) 121.580 Cap Volume Depth (m) 0.400

Complex Manhole: S4, DS/PN: 2.000

Porous Car Park

Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 3.3
 Membrane Percolation (mm/hr) 1000 Length (m) 10.0
 Max Percolation (l/s) 9.2 Slope (1:X) 100.0
 Safety Factor 2.0 Depression Storage (mm) 5
 Porosity 0.30 Evaporation (mm/day) 3
 Invert Level (m) 123.910 Cap Volume Depth (m) 0.300

Porous Car Park

Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 4.8
 Membrane Percolation (mm/hr) 1000 Length (m) 5.0
 Max Percolation (l/s) 6.7 Slope (1:X) 100.0
 Safety Factor 2.0 Depression Storage (mm) 5
 Porosity 0.30 Evaporation (mm/day) 3
 Invert Level (m) 123.910 Cap Volume Depth (m) 0.300

Porous Car Park

Infiltration Coefficient Base (m/hr) 0.00000 Safety Factor 2.0
 Membrane Percolation (mm/hr) 1000 Porosity 0.30
 Max Percolation (l/s) 9.2 Invert Level (m) 123.430

Diamond Wood & Shaw Limited The Old School Blaby Road Enderby Leicester, LE19 4AR		Page 9
Date 08/07/2025 11:22	24-21177 Leicester Road, Barwell Surface Water Calculations	
File 24-21177 0-010P3 Surfac...	Designed by LM Checked by BP	
Innovyze	Network 2020.1.3	

Porous Car Park

Width (m)	3.3	Depression Storage (mm)	5
Length (m)	10.0	Evaporation (mm/day)	3
Slope (1:X)	100.0	Cap Volume Depth (m)	0.300

Complex Manhole: S7, DS/PN: 1.004

Porous Car Park

Infiltation Coefficient Base (m/hr)	0.00000	Width (m)	3.3
Membrane Percolation (mm/hr)	1000	Length (m)	13.5
Max Percolation (l/s)	12.4	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	120.090	Cap Volume Depth (m)	0.300

Porous Car Park

Infiltation Coefficient Base (m/hr)	0.00000	Width (m)	6.0
Membrane Percolation (mm/hr)	1000	Length (m)	14.4
Max Percolation (l/s)	24.0	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	120.920	Cap Volume Depth (m)	0.300

Porous Car Park

Infiltation Coefficient Base (m/hr)	0.00000	Width (m)	6.0
Membrane Percolation (mm/hr)	1000	Length (m)	11.3
Max Percolation (l/s)	18.8	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	121.120	Cap Volume Depth (m)	0.300

Complex Manhole: S8, DS/PN: 1.005

Porous Car Park

Infiltation Coefficient Base (m/hr)	0.00000	Width (m)	7.4
Membrane Percolation (mm/hr)	1000	Length (m)	12.6
Max Percolation (l/s)	25.9	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	119.770	Cap Volume Depth (m)	0.100

Porous Car Park

Infiltation Coefficient Base (m/hr) 0.00000 Membrane Percolation (mm/hr) 1000

Diamond Wood & Shaw Limited		Page 10
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

Porous Car Park

Max Percolation (l/s)	25.7	Length (m)	15.4
Safety Factor	2.0	Slope (1:X)	150.0
Porosity	0.30	Depression Storage (mm)	5
Invert Level (m)	119.770	Evaporation (mm/day)	3
Width (m)	6.0	Cap Volume Depth (m)	0.300

Complex Manhole: S9, DS/PN: 1.006

Porous Car Park

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	3.0
Membrane Percolation (mm/hr)	1000	Length (m)	15.1
Max Percolation (l/s)	12.6	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	118.820	Cap Volume Depth (m)	0.300

Porous Car Park

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	6.0
Membrane Percolation (mm/hr)	1000	Length (m)	12.8
Max Percolation (l/s)	21.3	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	118.970	Cap Volume Depth (m)	0.300

Porous Car Park

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	6.0
Membrane Percolation (mm/hr)	1000	Length (m)	13.3
Max Percolation (l/s)	22.2	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	119.320	Cap Volume Depth (m)	0.300

Tank or Pond Manhole: S13, DS/PN: 1.009

Invert Level (m) 117.800

Depth (m)	Area (m ²)	Depth (m)	Area (m ²)
0.000	210.6	1.100	482.2

Diamond Wood & Shaw Limited The Old School Blaby Road Enderby Leicester, LE19 4AR		24-21177 Leicester Road, Barwell Surface Water Calculations	Page 11
Date 08/07/2025 11:22 File 24-21177 0-010P3 Surfac...		Designed by LM Checked by BP	
Innovyze		Network 2020.1.3	

1 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800
 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000
 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6
 Number of Online Controls 2 Number of Time/Area Diagrams 0
 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.401
 Region England and Wales Cv (Summer) 0.750
 M5-60 (mm) 19.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0
 Analysis Timestep 2.5 Second Increment (Extended)
 DTS Status OFF
 DVD Status ON
 Inertia Status ON

Profile(s)
 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, Summer and Winter
 720, 960, 1440, 2160, 2880, 4320, 5760,
 7200, 8640, 10080

Return Period(s) (years)
 Climate Change (%) 1, 30, 100
 0, 0, 40

PN	US/MH		Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Water Level
	Name	Storm						(m)
1.000	S1	15 Winter	1	+0%				124.136
1.001	S2	15 Winter	1	+0%				123.045
1.002	S3	30 Winter	1	+0%	30/15 Summer			120.463
2.000	S4	15 Winter	1	+0%				122.590
2.001	S5	15 Winter	1	+0%				120.399
1.003	S6	15 Winter	1	+0%				120.319
1.004	S7	15 Winter	1	+0%	100/15 Summer			118.980
1.005	S8	15 Winter	1	+0%	30/15 Summer			118.297
1.006	S9	15 Winter	1	+0%	30/15 Summer			118.233
1.007	S10	15 Winter	1	+0%	30/15 Summer			118.157
3.000	S11	15 Winter	1	+0%	100/15 Summer			118.120
1.008	S12	15 Winter	1	+0%	30/15 Summer			118.069
1.009	S13	30 Winter	1	+0%	30/60 Summer			117.906
1.010	S14	360 Winter	1	+0%	30/15 Summer			117.910
1.011	S15	360 Winter	1	+0%				117.187
1.012	S16	360 Winter	1	+0%				116.887
1.013	S17	360 Winter	1	+0%				116.588

Diamond Wood & Shaw Limited		Page 12
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

1 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

US/MH PN	Name	Surcharged Flooded			Half Drain		Flow (l/s)	Status	Level Exceeded
		Depth (m)	Volume (m³)	Flow / Overflow Cap. (l/s)	Time (mins)				
1.000	S1	-0.264	0.000	0.03			8.8	OK	
1.001	S2	-0.255	0.000	0.05			18.3	OK	
1.002	S3	-0.157	0.000	0.09		18	7.1	OK	
2.000	S4	-0.260	0.000	0.04		5	10.9	OK	
2.001	S5	-0.211	0.000	0.19			11.8	OK	
1.003	S6	-0.231	0.000	0.12			26.3	OK	
1.004	S7	-0.220	0.000	0.16		9	31.8	OK	
1.005	S8	-0.153	0.000	0.48		9	37.5	OK	
1.006	S9	-0.117	0.000	0.67		7	41.4	OK	
1.007	S10	-0.133	0.000	0.59			41.9	OK	
3.000	S11	-0.280	0.000	0.01			1.2	OK	
1.008	S12	-0.141	0.000	0.55			42.6	OK	
1.009	S13	-0.194	0.000	0.08			7.9	OK*	
1.010	S14	-0.040	0.000	0.03			5.1	OK	
1.011	S15	-0.253	0.000	0.06			5.1	OK	
1.012	S16	-0.253	0.000	0.06			5.1	OK	
1.013	S17	-0.252	0.000	0.06			5.1	OK	

Diamond Wood & Shaw Limited		Page 13
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

1 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

PN	US/MH Name	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
			Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.014	S18	360 Winter	1	+0%					116.414
1.015	S19	360 Winter	1	+0%					116.116
1.016	S10	360 Winter	1	+0%					115.982
1.017	S21	360 Winter	1	+0%					115.685

PN	US/MH Name	Surcharged Flooded			Half Drain Pipe			Level
		Depth (m)	Volume (m³)	Flow / Cap.	Overflow (l/s)	Time (mins)	Flow (l/s)	
1.014	S18	-0.253	0.000	0.06			5.1	OK
1.015	S19	-0.251	0.000	0.06			5.1	OK
1.016	S10	-0.253	0.000	0.06			5.1	OK
1.017	S21	-0.250	0.000	0.06			5.1	OK

Diamond Wood & Shaw Limited		Page 14
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800
 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000
 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6
 Number of Online Controls 2 Number of Time/Area Diagrams 0
 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.401
 Region England and Wales Cv (Summer) 0.750
 M5-60 (mm) 19.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0
 Analysis Timestep 2.5 Second Increment (Extended)
 DTS Status OFF
 DVD Status ON
 Inertia Status ON

Profile(s)
 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, Summer and Winter
 720, 960, 1440, 2160, 2880, 4320, 5760,
 7200, 8640, 10080

Return Period(s) (years) 1, 30, 100
 Climate Change (%) 0, 0, 40

PN	US/MH Name	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
			Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.000	S1	15 Winter	30	+0%					124.157
1.001	S2	15 Winter	30	+0%					123.078
1.002	S3	30 Winter	30	+0%	30/15 Summer				120.722
2.000	S4	15 Winter	30	+0%					122.615
2.001	S5	15 Summer	30	+0%					120.457
1.003	S6	15 Winter	30	+0%					120.368
1.004	S7	15 Winter	30	+0%	100/15 Summer				119.039
1.005	S8	15 Winter	30	+0%	30/15 Summer				118.813
1.006	S9	15 Winter	30	+0%	30/15 Summer				118.668
1.007	S10	15 Winter	30	+0%	30/15 Summer				118.485
3.000	S11	15 Summer	30	+0%	100/15 Summer				118.299
1.008	S12	15 Winter	30	+0%	30/15 Summer				118.303
1.009	S13	15 Summer	30	+0%	30/60 Summer				117.996
1.010	S14	1440 Winter	30	+0%	30/15 Summer				117.955
1.011	S15	1440 Winter	30	+0%					117.187
1.012	S16	1440 Winter	30	+0%					116.887
1.013	S17	1440 Winter	30	+0%					116.588

Diamond Wood & Shaw Limited		Page 15
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

US/MH PN	Name	Surcharged Flooded			Half Drain		Flow (l/s)	Status	Level Exceeded
		Depth (m)	Volume (m³)	Flow / Overflow Cap. (l/s)	Time (mins)				
1.000	S1	-0.243	0.000	0.08			21.6	OK	
1.001	S2	-0.222	0.000	0.15			50.8	OK	
1.002	S3	0.102	0.000	0.13	23	9.9	SURCHARGED		
2.000	S4	-0.235	0.000	0.10	5	26.7	OK		
2.001	S5	-0.153	0.000	0.48		29.6	OK		
1.003	S6	-0.182	0.000	0.32		70.9	OK		
1.004	S7	-0.161	0.000	0.43	6	87.3	OK		
1.005	S8	0.363	0.000	1.24	4	96.5	SURCHARGED		
1.006	S9	0.318	0.000	1.72	5	105.8	SURCHARGED		
1.007	S10	0.195	0.000	1.49		105.7	SURCHARGED		
3.000	S11	-0.101	0.000	0.03		2.4	OK		
1.008	S12	0.093	0.000	1.40		107.7	SURCHARGED		
1.009	S13	-0.104	0.000	0.14		13.3	OK*		
1.010	S14	0.005	0.000	0.03		5.1	SURCHARGED		
1.011	S15	-0.253	0.000	0.06		5.1	OK		
1.012	S16	-0.253	0.000	0.06		5.1	OK		
1.013	S17	-0.252	0.000	0.06		5.1	OK		

Diamond Wood & Shaw Limited		Page 16
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

PN	US/MH Name	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
			Period	Change	Surcharge	Flood	Overflow	Act. (m)	
1.014	S18	1440 Winter	30	+0%					116.414
1.015	S19	1440 Winter	30	+0%					116.116
1.016	S10	1440 Winter	30	+0%					115.982
1.017	S21	1440 Winter	30	+0%					115.684

PN	US/MH Name	Surcharged Flooded			Half Drain Pipe			Level
		Depth (m)	Volume (m³)	Flow / Overflow Cap. (l/s)	Time (mins)	Flow (l/s)	Status	
1.014	S18	-0.253	0.000	0.06		5.1	OK	
1.015	S19	-0.251	0.000	0.06		5.1	OK	
1.016	S10	-0.253	0.000	0.06		5.1	OK	
1.017	S21	-0.251	0.000	0.06		5.1	OK	

Diamond Wood & Shaw Limited		Page 17
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800
 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000
 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6
 Number of Online Controls 2 Number of Time/Area Diagrams 0
 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.401
 Region England and Wales Cv (Summer) 0.750
 M5-60 (mm) 19.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0
 Analysis Timestep 2.5 Second Increment (Extended)
 DTS Status OFF
 DVD Status ON
 Inertia Status ON

Profile(s)
 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, Summer and Winter
 720, 960, 1440, 2160, 2880, 4320, 5760,
 7200, 8640, 10080

Return Period(s) (years) 1, 30, 100
 Climate Change (%) 0, 0, 40

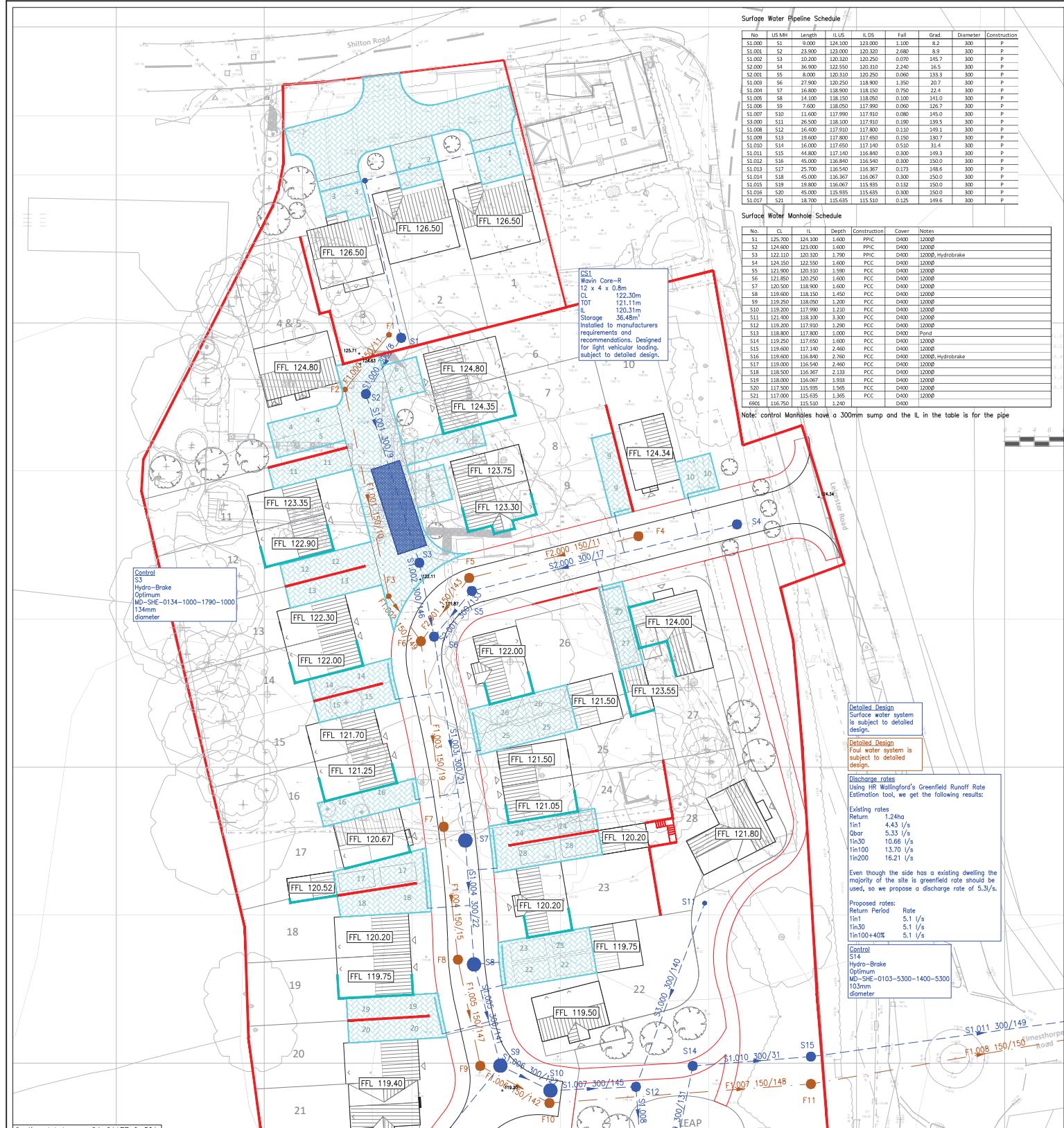
PN	US/MH Name	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
			Period	Change	Surcharge	Flood	Overflow	Act.	(m)
1.000	S1	15 Winter	100	+40%					124.177
1.001	S2	15 Winter	100	+40%					123.107
1.002	S3	240 Winter	100	+40%	30/15 Summer				120.823
2.000	S4	15 Winter	100	+40%					122.638
2.001	S5	15 Summer	100	+40%					120.528
1.003	S6	15 Winter	100	+40%					120.413
1.004	S7	15 Winter	100	+40%	100/15 Summer				119.918
1.005	S8	15 Winter	100	+40%	30/15 Summer				119.577
1.006	S9	15 Winter	100	+40%	30/15 Summer				119.172
1.007	S10	15 Winter	100	+40%	30/15 Summer				118.830
3.000	S11	15 Winter	100	+40%	100/15 Summer				118.495
1.008	S12	15 Winter	100	+40%	30/15 Summer				118.492
1.009	S13	15 Winter	100	+40%	30/60 Summer				118.192
1.010	S14	2880 Winter	100	+40%	30/15 Summer				118.104
1.011	S15	2880 Winter	100	+40%					117.187
1.012	S16	2880 Winter	100	+40%					116.887
1.013	S17	2880 Winter	100	+40%					116.588

Diamond Wood & Shaw Limited		Page 18
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	

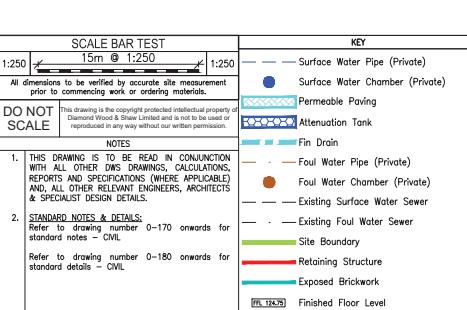
100 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

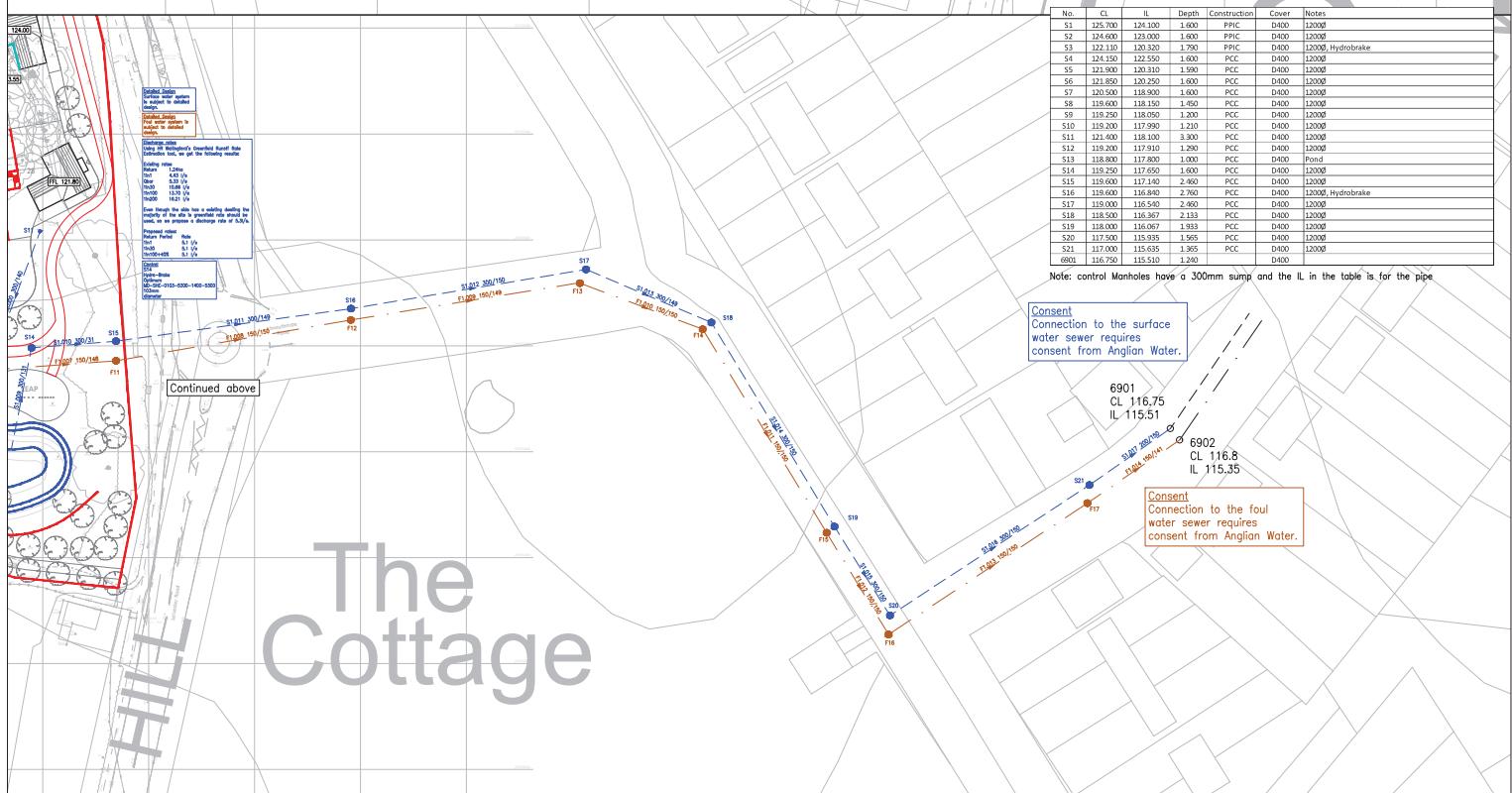
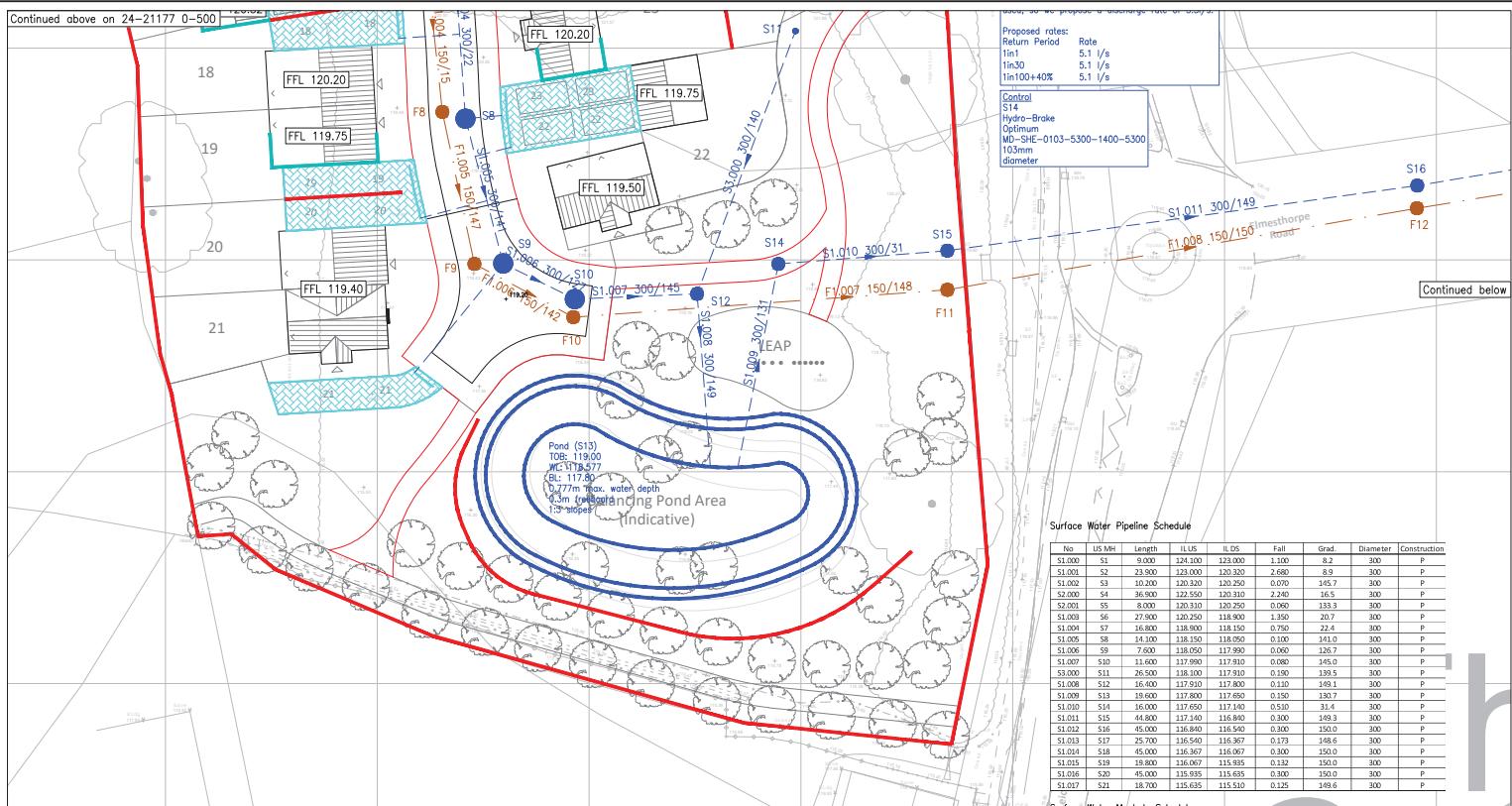
US/MH PN	Name	Surcharged Flooded			Half Drain Pipe			Status	Level Exceeded
		Depth (m)	Volume (m³)	Flow / Overflow Cap. (l/s)	Time (mins)	Flow (l/s)			
1.000	S1	-0.223	0.000	0.15		39.3		OK	
1.001	S2	-0.193	0.000	0.28		92.3		OK	
1.002	S3	0.203	0.000	0.13	47	10.0	SURCHARGED		
2.000	S4	-0.212	0.000	0.19	5	48.4		OK	
2.001	S5	-0.082	0.000	0.88		53.7		OK	
1.003	S6	-0.137	0.000	0.57		125.9		OK	
1.004	S7	0.718	0.000	0.71	4	141.7	SURCHARGED		
1.005	S8	1.127	0.000	2.12	7	164.8	FLOOD RISK		
1.006	S9	0.822	0.000	2.38	4	146.0	FLOOD RISK		
1.007	S10	0.540	0.000	2.06		145.8	SURCHARGED		
3.000	S11	0.095	0.000	0.05		4.2	SURCHARGED		
1.008	S12	0.282	0.000	1.92		147.9	SURCHARGED		
1.009	S13	0.092	0.000	0.15		14.4	SURCHARGED*		
1.010	S14	0.154	0.000	0.03		5.1	SURCHARGED		
1.011	S15	-0.253	0.000	0.06		5.1		OK	
1.012	S16	-0.253	0.000	0.06		5.1		OK	
1.013	S17	-0.252	0.000	0.06		5.1		OK	

Diamond Wood & Shaw Limited		Page 19
The Old School Blaby Road Enderby Leicester, LE19 4AR	24-21177 Leicester Road, Barwell Surface Water Calculations	
Date 08/07/2025 11:22	Designed by LM	
File 24-21177 0-010P3 Surfac...	Checked by BP	
Innovyze	Network 2020.1.3	


100 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

PN	US/MH Name	Storm	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Water Level
			Period	Change	Surcharge	Flood	Overflow	Act. (m)	
1.014	S18	2880 Winter	100	+40%					116.414
1.015	S19	2880 Winter	100	+40%					116.116
1.016	S10	2880 Winter	100	+40%					115.982
1.017	S21	2880 Winter	100	+40%					115.684


PN	US/MH Name	Surcharged Flooded			Half Drain Pipe			Level
		Depth (m)	Volume (m³)	Flow / Overflow Cap. (l/s)	Time (mins)	Flow (l/s)	Status	
1.014	S18	-0.253	0.000	0.06		5.1	OK	
1.015	S19	-0.251	0.000	0.06		5.1	OK	
1.016	S10	-0.253	0.000	0.06		5.1	OK	
1.017	S21	-0.251	0.000	0.06		5.1	OK	



Appendix I

Continued below on 24-21177 0-501

The Cottage

Foul Water Pipeline Schedule								
No.	US MH	Length	ILUS	ILD5	Fall	Grad.	Diameter	Construction
F1.001	F 1	8.00	133.000	122.700	0.800	11.9	150	P
F1.002	F 2	28.500	122.700	120.005	0.495	10.6	150	P
F1.003	F 3	7.040	120.005	119.950	0.055	136.0	150	P
F2.004	F 4	24.550	122.100	120.025	0.205	11.3	150	P
F1.005	F 5	26.250	119.950	118.020	1.130	13.0	150	P
F1.006	F 6	25.200	119.950	118.020	1.130	13.0	150	P
F1.007	F 7	18.070	118.600	117.405	1.195	15.1	150	P
F1.008	F 8	16.670	117.405	117.325	0.100	146.7	150	P
F1.009	F 9	10.610	117.325	117.250	0.075	141.5	150	P
F1.010	F 10	35.410	117.250	117.010	0.240	147.5	150	P
F1.011	F 11	16.000	117.010	116.720	0.290	150.0	150	P
F1.012	F 12	13.800	116.720	116.415	0.300	158.6	150	P
F1.013	F 13	24.760	116.415	116.250	0.165	150.1	150	P
F1.014	F 14	65.000	116.250	115.950	0.300	150.0	150	P
F1.015	F 15	22.500	115.950	115.800	0.150	150.0	150	P
F1.016	F 16	45.000	115.800	115.500	0.300	150.0	150	P

Fout	Water	Manhole	Number	Length	Width	Depth	Construction	Cover	Notes
F1	125.700	125.700	125.300	125.300	125.300	125.300	PRIC	D400	2000
F2	124.600	122.700	120.005	122.700	1.900	PRIC	D400	D1200	
F3	122.110	120.005	120.005	2.105	PRIC	D400	D1200		
F4	124.000	122.300	120.005	1.900	PRIC	D400	D1200		
F5	121.900	120.005	120.005	1.875	PRIC	D400	D1200		
F6	120.100	119.000	119.000	1.900	PRIC	D400	D1200		
F7	120.520	118.000	118.000	1.900	PRIC	D400	D1200		
F8	120.000	117.945	117.945	2.175	PRIC	D400	D1200		
F9	119.250	117.925	117.925	1.925	PRIC	D400	D1200		
F10	119.400	117.250	117.250	1.950	PRIC	D400	D1200		
F11	119.400	117.010	117.010	1.950	PRIC	D400	D1200		
F12	119.000	117.000	117.000	1.885	PRIC	D400	D1200		
F13	118.000	116.250	116.250	5.585	PRIC	D400	D1200		
F14	118.500	116.250	116.250	2.250	PRIC	D400	D1200		
F15	118.000	115.950	115.950	2.050	PRIC	D400	D1200		
F16	117.000	115.800	115.800	1.700	PRIC	D400	D1200		
F17	117.000	115.500	115.500	1.500	PRIC	D400	D1200		
F18	117.000	115.000	115.000	1.450	PRIC	D400	D1200		

NOT FOR CONSTRUCTION

DWS
Consulting Engineers

Diamond Wood & Shaw Limited

Project Title	LEICESTER ROAD	
	BARWELL	
Drawn	Engineer	Checked
LM	LM	BP
Scale	Date	
1:250, 1:500 @ A1	JAN 2025	
Drawing Title	DRAINAGE LAYOUT - OUTFALL	
Project No.	Drawing No.	Revision
24-21177	0501	P3

Our Ref: 25-21965

Project – Leicester Road, Barwell

Prepared by Leigh Middleton

Accompanying drawing: Severn Trent Pre-Application Response

FRA addendum

This statement has been prepared to address the LLFA Comments made on 13/6/2025 under LLFA ref. 2025/0485/04/F.

Their comments and our responses are:

- All attenuation required by the development must not be location within areas of individual property ownership.**
We have adjusted the position of the attenuation tank to be outside of the private area.
- Confirmation that the feature on the southern boundary is or is not a ditch along the (strategy to be amended if this is a ditch).**
This is not a ditch it is a right of way along the southern boundary.
- Where a connection to the adopted sewer is required, approval in principle from STW is required.**
Please find attached the STW Pre-Application advice confirming that connection to public sewer is acceptable at the rate shown within the design.
- Confirmation that the outfall route does not cross third party private land. Where it is required to cross third party land, formal permission from the landowner is required.**
We can confirm that the outfall route is planned to be within the highway and not in 3rd-party land. Permission will be sought from highways to install the pipeline.
- Impacts of 'urban creep' should be included with storage calculations.**
Urban creep has been added to the calculations. 10% has been applied to the driveways and roof areas. We have not applied 10% to the roadway as this is a fixed size and in the future any expansion would require to be included in another designed drainage system. It is unlikely that this will happen considering the current layout of the scheme.

WONDERFUL ON TAP

SEVERN
TRENT

Leigh Middleton
 Diamond Wood & Shaw Ltd
 The Old School
 Blaby Road
 Enderby
 Leicester
 LE19 4AR

Severn Trent Water Ltd
 Oxley Moor Road
 Wolverhampton
 WV9 5HN
www.stwater.co.uk
 network.solutions@severntrent.co.uk

Contact: Jasveer Bullock
 Contact No: 07970198053

Your ref:
 Reference: 1153232

11th July 2025

Dear Leigh

**Proposed Development: Land at Leicester Road, Barwell, Leicester, LE9 8BD
 (X – 445377, Y – 297011)**

I refer to your 'Development Enquiry Request' for the development of 28 new dwellings at the above named site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes which refer to surface water disposal from development sites.

Public Sewers in Site – Required Protection

Due to a change in legislation on 1 October 2011, there may be former private sewers on the site which have transferred to the responsibility of Severn Trent Water Ltd, which are not shown on the statutory sewer records but are located within your client's land. These sewers would also have protective strips that we will not allow to be built over. If such sewers are identified to be present on the site, please contact us for further guidance.

Please be advised, the records show that there is a water main crossing the western boundary of the site, which will require protective strips. For further information and guidance on this, please contact our Asset Protection Team who will be able to advise you further. The email address is asset.protection@severntrent.co.uk

Foul Water Drainage

I can confirm we would not have any objections to the anticipated additional foul flows of approximately 0.44 litres/second 2xDWF for a gravity connection to the receiving 225mm diameter public foul sewer located east of your site to manhole 6902 in Coronation Road, as this will not have an adverse impact on the network.

Therefore, a connection to the public sewer (direct or indirect) is acceptable subject to a formal Section 106 sewer connection approval (see later.)

Surface Water Drainage

If following testing, it is demonstrated that soakaways would not be possible on the site; satisfactory evidence will need to be submitted from the SI consultant (**extract or a supplementary letter**).

If soakaways are not possible, a connection to the 150mm diameter public surface water sewer to manhole 6901 located in Coronation Road at a restricted flow rate of 5.3 litres/second. This would satisfy SGN1 (enclosed), in accordance with Leicestershire Council SUDS Policy as the Lead Local Flood Authority (LLFA) for the area and statutory consultee in the planning process. Please see the guidance notes attached for further information.

Subject to flows being agreed with the LLFA and Section 106 sewer connection application.

New Connections

For any new connections (including the re-use of existing connections) to the public sewerage system, the developer will need to submit Section 106 application forms. Our New Connections department are responsible for handling all such enquiries and applications. To contact them for an application form and associated guidance notes please call 0800 7076600 or you can download them from our website www.stwater.co.uk.

Please quote ref: 1153232 in any future correspondence (including e-mails) with STW Limited. Please note that 'Development Enquiry' responses are only valid for 6 months from the date of this letter.

Yours sincerely,

Jasveer Bullock (Mrs)
Network Solutions - Developer Services